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Exercice 1 : Intégrales généralisées (baréme indicatif : 7 points)

1. VRAI/FAUX
Soit f une fonction définie et continue sur ]0,+oo[ & valeurs positives sur ]0,+oo[. Parmi les affirmations suivantes,

lesquelles sont vraies, lesquelles sont fausses ? Toutes les réponses devront étre justifiées ; on s’appuiera, le cas
échéant, sur I’utilisation de contre-exemples.

(a) Si f(¢) tend vers [ # 0 quand ¢ tend vers 0, alors son intégrale sur ]0,1] diverge.
(b) Sipourtoutz > 1, f(r) < e’ alors 'intégrale de f sur [1,+oo[ converge.
(c) Sil’intégrale de f sur ]0,+oo[ converge alors I’'intégrale de f sur ]0,+oo[ est absolument convergente.

2. Déterminer la nature des intégrales suivantes :
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Exercice 2 : Séries numériques (baréme indicatif : 8 points)

1. VRAI/FAUX
Soit (u,) une suite réelle. Parmi les affirmations suivantes, lesquelles sont vraies, lesquelles sont fausses ? Toutes

les réponses devront €tre justifiées ; on s appuiera, le cas échéant, sur I’utilisation de contre-exemples.
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(b) Siu, =a,+b, avec (a,) et (b,) deux suites réelles telles que Y a, et ¥ b, divergent, alors Y u, diverge.
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(c) Si = 5
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2. Déterminer la nature des séries suivantes :
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(a) Siu,~ , on peut conclure que ) u, converge.

n+1Y
( > pour tout n € N*, alors Y u,, converge absolument.
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3. Justifier la convergence et calculer la valeur de la somme des deux séries suivantes :
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Exercice 3 : Suite et série de fonctions (baréme indicatif : 5 points)
n
Onpose Vn> 1, Vx € RT, f,(x) = ’(;_li_)xgc
1. Déterminer sup,cg+|fn(x)|. Que peut-on en déduire sur la convergence uniforme de la suite de fonctions (f;,)
sur RT ?
2. Etudier la convergence simple de la série Y f,, sur R™.
3. Montrer que I’on a, sur R, convergence uniforme mais pas convergence normale de la série Y f;,.




Formulaire

Développements limités au voisinage de 0 de fonctions usuelles
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Table de primitives de fonctions usuelles

f(x) F(x) Domaine
s
x* RsioeN, Risic e R — N
(a#—1) a+1
1
- 1 R* R*
. n|x| * ouR*
COSX sinx R
sinx —COSX R
e’ e R
chx sh x R
sh x chx R
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1
arctan x R



