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Exercice 1 : Intégrales généralisées (baréme indicatif : 8,5 points)

1. VRAI/FAUX
Soit f une fonction définie et continue sur ]0,+oo[. Parmi les affirmations suivantes, lesquelles sont vraies,
lesquelles sont fausses ? Toutes les réponses devront €tre justifiées ; on s’appuiera, le cas échéant, sur I’ utilisation
de contre-exemples.

(a) Sil’intégrale de f sur ]0,1] converge alors, f est prologeable par continuité en 0.
(b) Sitf(t) tend vers +co quand 7 tend vers 0, alors 'intégrale de f sur ]0,+o[ diverge.
(c) L’intégrale de f sur [1,+oo[ converge si I’intégrale de | f| sur [1,+co[ converge.

(d) L’intégrale de f sur [1,+oo[ converge si f(¢) tend vers O quand ¢ tend vers +eo.
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3. Déterminer la nature de I’intégrale : / — dt.
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Exercice 2 : Séries numériques (baréme indicatif : 8 points)

1. Question de cours : démontrer que si une série de terme général u,, converge, alors lil}rl u, =0.
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2. VRAI/FAUX
Soit (u,) une suite de nombres réels positifs. Parmi les affirmations suivantes, lesquelles sont vraies, lesquelles
sont fausses ? Toutes les réponses devront €tre justifiées ; on s’appuiera, le cas échéant, sur I’utilisation de
contre-exemples.
(a) Si (u,) converge alors la série Y v,, ol v, = u,, — u,_1, converge.
(b) Si la série Y u? converge, alors la série de terme général u,, converge.

(c) Silasérie Y (—1)"u, diverge, alors la série de terme général u,, diverge.
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(a) Montrer que la série de terme général u,, converge.

4. Soitpourn>1, u, =
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(b) Montrer que R, < gun+1. En déduire que trois termes sont suffisants pour approcher Z u, 20,001 pres.
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Exercice 3 : Suite de fonctions (bareme indicatif : 3,5 points)
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1. Montrer que la suite de fonctions f,(x) = n définies sur [0, 1] pour n € N* converge simplement vers une
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fonction f a déterminer.
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2. Calculer lim / Ju(x)dx.
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Formulaire

Développements limités au voisinage de 0 de fonctions usuelles

(I+x)*=14ax+ Mx2+...+ alo-l).(@=n+t 1)x”—|—0(x")
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Table de primitives de fonctions usuelles

f(x) F(x) Domaine
s
x* RsioeN, Risic e R — N
(a#—1) a+1
1
- 1 R* R*
. n|x| * ouR*
COSX sinx R
sinx —COSX R
e’ e R
chx sh x R
sh x chx R
th x In(ch x) R
1
arctan x R



