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1.3. First order filters

1.4. Second order filters
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Here we will describe the methods used to analyse the behaviour in the frequency
domain of a linear circuit, i.e. how the output varies when the input frequency changes.

In order to study a linear circuit, we will apply a sinusoidal input signal (for instance
using a function generator in sinusoidal mode) and study the output (for instance using
an oscilloscope). The input, usually represented on the left side is also called the
excitation signal, while the output, generally represented on the right side is also called
the response.

Thanks to the linearity of the circuit, all signals will be sinusoidal and their frequency
will be equal to that of the input, so we will only use complex notations to represent
the signals (voltages and currents).

1.1. Frequency (harmonic) analysis of linear circuits

Linear circuitInput signal Output signal 
(response)
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A quadrupole is an electrical circuit that has four connections: two input
connections and two output connections. There are four electrical quantities: input
voltage ue and input current ie, output voltage us and output current is.

Source Charge
Ae

Be

As

Bs

Quadrupoleue us

ie is

A quadrupole is made of dipoles (it can be represented as an assembly of
interconnected dipoles). It is said to be linear if and only if all of the dipoles it is made
of are linear.

1.1.1. Dipoles and quadrupoles

A dipole is an electrical element (or 
component) with two connections:

D

u

i
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This function depends on the characteristics of the quadrupole and on the frequency
(noted f or sometimes n) of the signals (generally voltages, but can also be currents)
which is imposed by the input. Often, instead of the frequency (in Hz), the angular
frequency w in rd/s is used, where w = 2 p f .

The harmonic transfer function of a linear quadrupole, generally noted T(jw) (or H(jw)) is
the ratio of the complex representation of the output signal S to that of the input signal E:

T(jw) = S / E

1.1.2. Harmonic transfer function of a linear quadrupole

To completely characterise the response of a linear circuit to a sinusoidal input, one
needs to study its transfer function T as a function of frequency f or angular frequency w:
T being a complex function, we will need to study both

- its magnitude: A(w) = | T(jw) |
- its phase shift: ϕ(ω) =arg(T())

1.1.3. Magnitude, amplification/attenuation and phase shift

If A() > 1 the circuit amplifies the input (the output amplitude is higher than that of the input)

If A() < the circuit attenuates the input (the output amplitude is lower than that of the input)
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What can be the use of a linear quadrupole?

Quadrupole
Q

Amplify a 
signal

Shift a 
signal’s 
phase

Change the shape of a 
complex signal by 

acting differently on its 
harmonics …

Filter (sort out) a mix of several 
signals: spectral analysis, 

selection, elimination of noise…
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One can define the gain of a quadrupole (without dimension) using the decibel (dB)
as unit, by:

GdB = 20 log10(A(w)) = 20 log10 (|T(jw)|)

The gain is just another way to quantify the magnitude of the transfer function.

A few comments:

The decibel is a sub-multiple of the bel, a unit named after Alexander Graham Bell, the
inventor of the telephone. It was first - and still is - used to measure sound intensity (it takes
into account the fact that the human ear has a close to logarithmic response) and has been
extended to electrical quantities.

Originally the gain was was defined as a ratio of powers : GB = log (Pout/Pin) in bels, but a
unit ten times smaller is now preferred: the decibel defined as GdB = 10 log (Pout/Pin) .

Since the electrical power is proportional to the voltage (or current) square, the gain in
decibels can be calculated as GdB = 10 log (aUout2/aUin2) = 20 log (Uout/Uin).

1.1.4. The GAIN of a quadrupole
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Interpretation of the gain
1) What does it mean if the gain GdB positive ? Negative ?
The gain GdB is positive if & only if A > 1 Þ the output is amplified as

compared to the input .
The gain GdB is negative if & only if A < 1 Þ the output is attenuated as
compared to the input .

2) What is the gain and the transfer function’s magnitude (also called the
amplification) of a quadrupole if we obtain a 1V output when applying a 5V input ?

A = Us / Ue = 1 / 5 = 0,2 and GdB = 20 log A = 20 log(0,2) = -14dB

3) What do the following sentences mean: « at 3 kHz, this quadrupole has a gain of
+20 dB / -20 dB / -40 dB / -3 / +6 dB » ?

GdB = + 20dB Þ 20 log (A) = + 20Þ log (A) = 1 Þ A = 101 = 10

GdB = - 20dB Þ 20 log (A) = - 20 Þ log (A) = -1 Þ A = 10-1 = 0,1
GdB = - 40dB Þ 20 log (A) = - 40 Þ log (A) = -2 Þ A = 10-2 = 0,01

GdB = -3dB Þ 20 log (A) = -3dB Þ log (A) = -3/20 Þ A = 1/√2
GdB = +6dB Þ 20 log (A) = + 6dB Þ log (A) = 6/20 Þ A = 2
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A logarithmic scale allows a wide frequency range to be represented on a single graph. Each
frequency decade has the same length on the scale (e.g. 1Hz to 10Hz has the same length as
100Hz to 1kHz). The horizontal axis is thus in fact log (f), but only the values in Hz or Rad/sec
are written.

In order to analyse the response of a linear quadrupole as a function of frequency, the
Bode plot is the most practical representation.
A Bode plot is a set of two curves as a function of frequency or angular frequency:
- The first one represents the gain G, in dB
- The second one represents the phase shift ϕ, in rad or degrees.

Very important specificity of the Bode plot:
a logarithmic scale is used for the frequency or angular frequency

Why was a logarithmic scale chosen?

1.2. Bode plots
1.2.1. Characteristics of a Bode plot

f(Hz)

ϕ(rad or deg)

log(f)
10 100 1000
1 2 3

f(Hz)

G(dB)

log(f)
10 100 1000
1 2 3

1
0

1
0
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A few definitions: decade, octave and choice of represented frequency range
Two frequencies f1 and f2 > f1 are separated by a decade if f2 = 10 * f1
Decades are already represented on sheets prepared for Bode plots

Two frequencies f1 and f2 > f1 are separated by an octave if f2 = 2 * f1

It is up to you to determine which values are represented on a Bode plot: you must
choose them so that the most interesting parts of the plot is around the middle of the
frequency axis.

In a Bode plot, the slopes of line segments are expressed either in dB/decade, or in
dB/octave. For linear quadrupoles, the slopes are always multiples of 20 dB/decade
(which practically corresponds to multiples of 6 dB/octave).
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A value of frequency f is chosen and placed according to its decimal logarithm log(f), f being
expressed in Hz.
- Construction of a decade:
The following table is filled-in:

- Then the positions of log10(x) are placed along the axis:

1 2 10 f
0 0.3 1 log(f)

To cover several decades, all you need to do is to reproduce this scale (on the left and/or on the 
right)  as many times as required. The frequency f is multiplied by 10 each time when moving 
one decade towards the right and divided by 10 each time when moving one decade towards the 
left. 

Comment: for those who often need to trace Bode plots, specific sheets with a logartthmic
horizontal scale have been designed (semi-logarithmic paper), avoiding the need to build the
scale such as described above.

Construction of a logarithmic scale

f 1 2 3 4 5 6 7 8 9 10

log10(f) 0 0,3 0,477 0,6 0,699 0,778 0,845 0,903 0,954 1
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1.2.2. Asymptotic Bode plots of a few transfer functions. 
The asymptotic Bode plot is an approximate plot that roughly describes the behaviour of
a quadrupole using only straight line segments.

It is obtained by considering the behaviour at the frequency limits: f or w ® 0 and f or w
® ¥, considering that in a sum, only the dominant terms are taken into account.

Some particular values then appear in the transfer function.

We will determine asymptotic Bode plots of a few transfer functions.

A helpful comment for some transfer functions: to obtain the Bode (or asymptotic Bode)
plot of the inverse of a transfer function, you just need to change the sign of its Bode (or
asymptotic Bode) plot.

A helpful comment for complicated transfer functions: the Bode (or asymptotic Bode) plot
of the product of two transfer functions is the sum of each of their Bode (or asymptotic
Bode) plots.
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T1(jw) = jw/w0 (w and w0 are always positive)
GdB = 20 logw - 20 logw0= 20 logw + cst
GdB is a straight line with a slope of +20 dB/decade
ϕ = + p / 2 rad or +90 deg

Here the asymptotic Bode plot and the Bode plot
itself are identical.

T2(jw) = 1 / jw/w0= 1 / T1(jw)
GdB = -20 logw + 20 logw0= -20 logw + cst
GdB is a straight line with a slope of -20 dB/decade
ϕ = - p / 2 rad or -90 deg

The Bode plot of T2 is minus the one of T1
Here again the asymptotic Bode plot and the Bode
plot itself are identical.
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0

T5(jw) = 1 / (1 + jw/w1)(1 + jw/w2) =
1 / (1 + jw/w1) x 1 / (1 + jw/w2)

Let’s use the results of T4: dashed lines, first with
w1 second with w2. Then we just need to add
the two asymptotic curves (solid line). Slopes
are (from left to right): 0, -20 and -40 dB/decade.

T6(jw) = 1 / (1+2mjw + (jw/w0)2),

If m > 1, T6 can be expressed as T5.
If m<=1, T6 cannot be expressed as T5, then
the asymptotic Bode plot is the one below
below. Slopes are then 0 and -40 dB/decade.
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1.3. First order filters
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1.3.1. 1st order electrical circuits
In general, a transfer function can be written as a rational fraction of polynomial

functions of jω:
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The order of the circuit is given by the degree of the polynomial function D(jω):
- if D(ω) is a 1st degree polynomial of jω, then the circuit is a 1st order one
- if D(ω) is a 2nd degree polynomial of jω, then the circuit is a 2nd order one
- etc.

Examples : and are 1st order circuits

and are 2nd order circuits
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If the output current is zero, the transfer
function can be obtained by applying the
voltage divider formula:

1.3.2 How to study simple quadrupoles / filters

Quadrupole Q

ue
us

Z1

Z2
Simple quadrupoles/filters can generally by
represented as in the figure:

Magnitude:

A(w) and GdB(w) 

Phase shift:

φ(w) 

Variations of the magnitude and phase shift
as functions of angular frequency can then
be studied separately.

Often, an asymptotic study is sufficient:
- Low frequency behaviour (ω ® 0)
- High frequency behaviour (ω ® +¥)
- Specific values: maximum,…

H(jw) = Us / Ue = Z2 / (Z1 + Z2)
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Remark:
Most often, the order of a circuit can be determined by the number of capacitors and 
inductors that it contains. Only 1 inductor or capacitor: 1st order circuit.

V1

C

R V2

A filter is an electrical circuit that contains elements assembled in a way to
selectively transmit signals in a given frequency range. An ideal filter has one or
several pass-bands in which signals are transmitted without being attenuated and
one or several stop-bands in which signals are attenuated or stopped.
Filters can be characterised by:
- Their amplification or atténuation
- The frequency bands in which they operate: low-pass, high-pass, band-pass notch
- Their technology: active filters (can amplify signals because they contain at least 
one active component) of passive filter (made only of capacitors, inductors and 
resistors).

1.3.2. Filtering circuits (or filters)
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ffc1 fc2
Bandpass filter

A

ffc1 fc2
Notch filter

A

ffc

A

Low-pass filter
f

A

High-pass filter
fc

Definition of the cut-off frequency(ies) of a filter.
Cut-off frequencies are the frequency limits of a filter’s passband, they are defined 
by the following condition on the magnitudes: 

GdB (fc) = GdB max – 3 dB Û A(fc) = Amax / Ö2

Ideal filters
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A first order filter is a 1st order electrical circuit that allows input signals to be
attenuated (cut or stopped) in a certain range of frequencies. In this stopband, the
magnitude curve of the Bode plot of a first order filter always has a ±20 dB/decade
slope (or ±6 dB/octave).
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T3 = 1/(1+j.f/fo)

A low-pass filter:
• does not attenuate low frequency
signals, i.e. between 0 Hz et fc.
• attenuates (filters out) high
frequency signals, i.e. between fc
and+∞.

-3dB bandpass: [0 ;fc]

stop-band: ] [+¥;cf

fc: cut-off frequency

Low-pass filter: its transfer function is given by

1.3.3. Bode plots of first order filters

Plot for K = 1
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High-pass filter: its transfer function is given by

A high-pass filter:
• does not attenuate high
frequency signals, i.e. between fc
and +∞.

• attenuates (filters out) low
frequency signals i.e. between 0
Hz and fc.

-3dB bandpass: ] [+¥;cf

stop-band: [0 ;fc]

fc: cut-off frequency

Plot for K’ = 125
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1.3.4 Qualitative analysis of filters

The qualitative analysis of a filter consists in the determination of its behaviour for
extreme frequencies, i.e. f ® 0 and f ® +∞. For this one needs only to replace the
dipoles by their equivalent at these frequency limits:

ZL = jLwZR = R

uR(t)R

iR(t)

uL(t)L

iL(t)

C uc(t)

ic(t)

ZR = Rω® 0

ω® +∞
ZC	® 0 ZL	® ∞

ZC ® ∞ ZL	® 0

ZR = R Capacitor	equivalent	to	a	

short	circuit

Inductor	equivalent	to	a

short	circuit

Capacitor	equivalent	to	an	

open	circuit

Inductor	equivalent	to	an

open	circuit

ZC = 1 /jCw
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1.3.4 Qualitative analysis of first order filters

ue(t) us(t)R

C

ue(t) us(t)R

C1

C2
ue(t)

R

C us(t)

ue(t) us(t)R

Cω® 0

us(t) = 0

ue(t) us(t)R

Cω® ∞

us(t) = ue(t)

ue(t)

R

C us(t)

ω® 0

us(t) = ue(t)

ue(t)

R

C us(t)

ω® ∞

us(t) = 0

ue(t) us(t)R

C1

C2

ω® ∞

us(t) = 0

ue(t) us(t)R

C1

C2

ω® 0

us(t) = 0

=> High-pass filter => Low-pass filter => Band-pass filter
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1.4. Second order filters

The 4 types of typical 2nd order filters are characterised by the following transfer
functions:

High-pass (or low-cut) filters:Low-pass (or high-cut) filters:

Bandpass filters: Notch filters:
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m > 1 m < 1
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1.4.2. Qualitative analysis of second order filters
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1.4.2. Qualitative analysis of second order filters
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