

FONCTIONS : Dérivabilité et Différentielle

Objectifs

- Connaître la définition du nombre dérivé et ses différentes interprétations.
- Utilisation de la différentielle
- Comprendre les notations utilisées en physique.

1 Dérivée

1.1 Introduction

1.1.1 Taux d'accroissement

En physique on trouve souvent le quotient suivant :

$$\frac{f(t_2) - f(t_1)}{t_2 - t_1}$$

variation d'une grandeur f par rapport à la variation du temps t et que l'on note $\frac{\Delta f}{\Delta t}$. On l'appelle taux d'accroissement de f. On utilise la lettre Δ (Delta) pour une variation, une grande **D**ifférence.

Exemple 1.

1. En électricité, on appelle q(t) la charge en coulomb à l'instant t sur un conducteur, et l'on considère

$$\frac{q(t_1) - q(t_2)}{t_1 - t_2} = \frac{\Delta q}{\Delta t}$$

En mécanique, on appelle x(t) la distance parcourue à l'instant t et l'on considère

$$\frac{x(t_2) - x(t_1)}{t_2 - t_1} = \frac{\Delta x}{\Delta t} \tag{1}$$

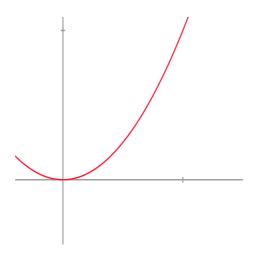
Interpréter physiquement les deux taux d'accroissements précédents.

2. En mathématiques, si f est une fonction et x sa variable, on considère

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{\Delta f}{\Delta x}$$

1

Interpréter graphiquement le taux d'accroissement sur le graphique suivant.



1.1.2 Limite d'un taux d'accroissement

Reprenons l'exemple du taux d'accroissement (??), que représente-t-il si l'on considère une variation Δt très petite?

On peut créer de nouvelles grandeurs en considérant les taux d'accroissements pour des variables t_1 ou t_2 très proches.

D'un point de vue théorique, c'est à dire mathématiques, on considère la limite des taux d'accroissement lorsque t_1 tend vers t_2 .

On obtient donc:

$$\lim_{t_1 \to t_2} \frac{f(t_1) - f(t_2)}{t_1 - t_2} \tag{2}$$

Exemple 2.

- 1. En physique, comment peut-on calculer expérimentalement cette limite?
- 2. En mathématiques, que peut-on en dire?
- 3. Donner le nom des trois grandeurs précédentes lorsque t_1 tend vers t_2 (pour la physique), ou x_1 tend vers x_2 (pour les mathématiques).

1.2 Dérivation en un point

Reprenons la définition (??) en posant $t_2 = a$ et $h = t_1 - t_2$. La limite précédente peut alors s'écrire uniquement en fonction de a et h. On a donc deux écritures pour calculer le nombre dérivé :

Définition 1.

Soient $a \in I$ un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ une fonction.

(i) On dit que f est dérivable en a si et seulement si

$$\lim_{h\to 0} \frac{f(a+h) - f(a)}{h} \quad \text{ou} \quad \lim_{x\to a} \frac{f(x) - f(a)}{x - a}$$

existe et est finie; cette limite est alors notée f'(a) et appelée dérivée de f en a.

(ii) On dit que f est dérivable à droite en a si et seulement si

$$\lim_{h \to 0^+} \frac{f(a+h) - f(a)}{h} \quad \text{ou} \quad \lim_{x \to a^+} \frac{f(x) - f(a)}{x - a}$$

existe et est finie; cette limite est alors notée $f'_d(a)$ et appelée dérivée de f à droite en a.

(iii) On dit que f est dérivable à gauche en a si et seulement si

$$\lim_{h \to 0^{-}} \frac{f(a+h) - f(a)}{h} \quad \text{ou} \quad \lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a}$$

existe et est finie; cette limite est alors notée $f'_q(a)$ et appelée dérivée de f à gauche en a.

Exemple 3.

Soit f la fonction valeur absolue. Étudier la dérivabilité de f en 0.

Proposition 1.

Soit a un réel appartenant à un intervalle ouvert I.

- (i) Pour que f soit dérivable en a, il faut et il suffit que f soit dérivable à droite et à gauche en a et que $f'_d(a) = f'_a(a)$, toutes deux étant des nombres finis.
- (ii) Si $f'_d(a)$ et $f'_g(a)$ existent, sont finies mais différentes alors le point A(a, f(a)) est appelé point anguleux.
- (iii) Si $\lim_{h\to 0^-} \frac{f(a+h)-f(a)}{h} = \infty$ alors la courbe admet une demi-tangente verticale à gauche en a.

Remarque 1.

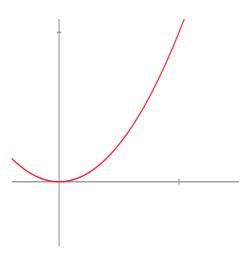
Si I est de la forme [a; b[alors la notion de dérivée à droite se confond avec la notion de dérivée, il n'y a pas de dérivée à gauche. De même pour un intervalle de la forme]b; a].

Exemple 4.

Donner un exemple de fonction dans chacun des cas précédents, et les représenter.

1.3 Interprétation graphique de la dérivée

En reprenant les notations précédente, interpréter graphiquement le nombre dérivée de f en a sur le graphique suivant.



Théorème 1 (Équation de la tangente).

Soit f une fonction dérivable en a alors une équation de la tangente à la courbe de la fonction f en a est

$$y - f(a) = f'(a)(x - a)$$

Exemple 5.

Déterminer une équation de la tangente à la fonction $f(x) = \frac{1}{x}$ pour x = 3

Proposition 2.

Une fonction dérivable en un réel a est continue en a.

Exemple 6.

La réciproque est-elle vraie?

1.4 Application au calcul de limites

Les résultats suivants s'obtiennent facilement en utilisant le nombre derivé :

Propriété 1.

$$1. \lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$2. \lim_{x \to 0} \frac{\cos x - 1}{x} = 0$$

3.
$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

$$4. \lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

Exemple 7.

alors

Démontrer le résultat de la première limite et illustrer chacune des limites par un graphique.

Propriété 2. Règle de l'Hospital (ou Hôpital)

Soit $a \in \mathbb{R}$ ou $a = \pm \infty$,

- soient f et g deux fonctions qui tendent toutes les deux vers 0 ou vers $\pm \infty$, en a.
- si le rapport $\frac{f'(x)}{g'(x)}$ admet une limite finie ou égale à $\pm \infty$ en a

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

4

Exemple 8.

Démontrer la propriété précédente dans le cas particulier où f' et g' sont continues en a avec a réel et $g'(a) \neq 0$.

1.5 Fonction dérivée

Définition 2.

On appelle dérivée de $f: I \to \mathbb{R}$, la fonction qui à chaque x appartenant à I, associe f'(x). Cette fonction est notée f'. On dit que f est dérivable sur I si et seulement si la fonction f est dérivable pour tout x appartenant à I.

Exemple 9.

La fonction racine carrée est-elle dérivable sur son ensemble de définition?

Définition 3 (Notations de Leibniz).

A partir de
$$f'(a) = \lim_{x \to a} \frac{\Delta y}{\Delta x}$$
 on **note**

$$f'(a) = \frac{df}{dx}(a)$$

ou encore
$$f' = \frac{df}{dx}$$
, $f'(x) = \frac{df}{dx}$, etc...

1.6 Opérations sur les dérivées

Théorème 2.

Soient $\lambda \in \mathbb{R}$, $f, g: I \to \mathbb{R}$ deux fonctions dérivables sur I, alors :

- (i) f + g est dérivable sur I et (f + g)' = f' + g'
- (ii) λf est dérivable sur I et $(\lambda f)' = \lambda f'$
- (iii) fg est dérivable sur I et (fg)' = f'g + fg'
- (iv) Si pour tout x appartenant à I, g(x) est différent de 0 alors $\frac{f}{g}$ est dérivable sur I et

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

Théorème 3.

Soient I, J deux intervalles de $\mathbb{R}, f: I \to \mathbb{R}, g: J \to \mathbb{R}$ tels que $f(I) \subset J$.

Soit la fonction $g \circ f$, de I dans \mathbb{R} définie par $x \mapsto g(f(x))$.

Si f est dérivable sur I et si g est dérivable sur J alors $g \circ f$ est dérivable sur I et $(g \circ f)' = (g' \circ f) f'$.

Exemple 10.

Soit h la fonction définie par $h(x) = e^{\ln x}$. Avec les notations du théorème précédent, déterminer I, J, f et g puis calculer la fonction dérivée de la fonction h.

5

Remarque 2.

En physique, on utilise souvent la notation de Leibniz. Supposons que l'on ait par exemple, trois fonctions z, y et x tels que $z = y \circ x$, c'est à dire z(t) = y(x(t)) avec t la variable. Avec les notations de Leibniz, z'(t) = (yox)'(t) = y'(x(t)).x'(t) revient à écrire :

$$\frac{dz}{dt}(t) = \frac{dy}{dX}(x(t)) \cdot \frac{dx}{dt}(t)$$

L'usage en physique, veut que l'égalité précédente devienne :

$$\frac{dz}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$$

Cette écriture est pratique du point de vue mnémotechnique, mais elle comporte deux dangers :

- Le dx au dénominateur, n'est pas du tout le même dx que le numérateur. Le premier correspond à la variable de y, alors que le deuxième correspond à la fonction x.
- Il n'est pas précisé que $\frac{dy}{dx}$ est évalué en x(t).

1.7 Dérivées successives

Définition 4.

Soit $f: I \to \mathbb{R}$ une fonction.

On définit les dérivées successives de f de proche en proche par récurrence en posant :

Pour $a \in I$, $f^{(n)}(a) = (f^{(n-1)})'(a)$ où $f^{(n)}$ est la fonction dérivée de $f^{(n-1)}$

 $f^{(n)}$ est appelée dérivée $n^{\text{ième}}$ de f.

On dit que f est n fois dérivable sur I si et seulement si $f^{(n)}$ est définie sur I.

On dit que f est indéfiniment dérivable sur I si et seulement si f est n fois dérivable sur I pour tout entier naturel n.

Exemple 11.

Déterminer la dérivée $n^{\text{ième}}$ de la fonction f définie par $f(x) = e^{2x}$.

Remarque 3.

On a aussi les notations suivantes pour les dérivées successives :

$$f'(x) = \frac{df}{dx}, f''(x) = \frac{d^2f}{dx^2}...f^{(n)}(x) = \frac{d^nf}{dx^n}$$

Théorème 4.

Soient $\lambda \in \mathbb{R}$, $f, g: I \to \mathbb{R}$ deux fonctions n fois dérivables sur I, alors :

- (i) f + g est n fois dérivable sur I et $(f + g)^{(n)} = f^{(n)} + g^{(n)}$
- (ii) λf est n fois dérivable sur I et $(\lambda f)^{(n)} = \lambda f^{(n)}$
- (iii) fg est n fois dérivable sur I et $(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)}$ (formule de Leibniz).
- (iv) Si pour tout x appartenant à I g(x) est différent de 0 alors $\frac{f}{g}$ est n fois dérivable sur I

Exemple 12. Déterminer la dérivée n^{ième} de la fonction f définie par $f(x) = \cos xe^{2x}$.

1.8 Classe d'une fonction

Soit $f: I \to \mathbb{R}$ une fonction. Soit $n \in \mathbb{N}$.

On dit que f est de classe C^n sur I si et seulement si f est n fois dérivable et $f^{(n)}$ est continue sur I.

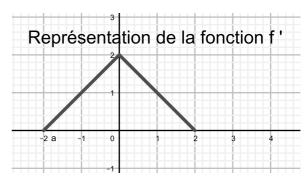
On dit que f est de classe $\mathcal{C}_{\infty}^{\infty}$ sur I si et seulement si f est indéfiniment dérivable sur I.

On dit que f est de classe \mathcal{C}^0 sur I si et seulement si f est continue sur I.

Exemple 13.

Montrer que la fonction racine carré est de classe C^0 sur son domaine de définition mais pas classe C^1 .

Exemple 14. Soit f une fonction continue sur [-2,2], dont la représentation graphique de sa dérivée est ci-contre.



- 1. f est-elle de classe C^1 ?
- 2. f est-elle de classe C^2 ?

Propriété 3.

Les fonctions rationnelles, trigonométriques, exponentielle, logarithme, ainsi leur composée sont de classe \mathcal{C}^{∞} sur leur domaine de définition.

1.9 Limite de la dérivée en un point

Pour étudier la dérivabilité en un point, la méthode classique est d'utiliser la définition du nombre dérivé, c'est à dire d'étudier la limite du taux d'accroissement. Une autre méthode est d'utiliser le théorème suivant.

Théorème 5.

Soient I un intervalle de \mathbb{R} , a un élément de I, f une fonction de classe \mathcal{C}^1 sur $I \setminus \{a\}$ et continue en a.

- 1. Si $\lim_{x\to a} f'(x) = l \in \mathbb{R}$ alors f est dérivable en a et f'(a) = l donc $f \in \mathcal{C}^1(I)$
- 2. Si $\lim_{x\to a} f'(x) = \pm \infty$ alors f n'est pas dérivable en a et la courbe représentative de f admet une tangente verticale en (a, f(a))
- 3. Si $\lim_{x\to a^+} f'(x) = l_1$ et $\lim_{x\to a^-} f'(x) = l_2$ avec $l_1 \neq l_2$ alors f n'est pas dérivable en a, et la représentation graphique de f admet deux demi-tangente de pentes respectives l_1 et l_2 .
- 4. En revanche si $\lim_{x\to a^+} f'(x)$ ou $\lim_{x\to a^-} f'(x)$ n'existent pas alors on ne peut rien affirmer sur la dérivabilité de f en a.

Remarque 4.

Dans les trois premiers cas, ce théorème permet de conclure, mais dans le quatrième cas on ne peut pas conclure, on est donc obligé d'étudier $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$.

Exemple 15.

Soit
$$g$$
 définie sur \mathbb{R} par : $g(x) = \begin{cases} x^2 \sin \frac{1}{x} \sin x \neq 0 \\ g(0) = 0 \end{cases}$.

Montrer que g' n'a pas de limite en 0, mais que pourtant g est dérivable en 0.

Remarque 5.

Le théorème précédent peut être utilisé pour démontrer qu'une fonction est de classe C^{n+1} , en remplaçant f par $f^{(n)}$.

2 Différentielle

2.1 Différentielle en un point

En physique, beaucoup de phénomènes se modélisent en considérant la variation de la grandeur étudiée lorsque la variable subit une "petite" variation.

Soit y est la grandeur, et x la variable. Étudions les variations autour du réel x_0 .

En physique il y a deux façons de considérer des "petites" variations de la variable x autour de x_0 :

• Lorsque l'on fait une expérience, on prend un x_1 proche de x_0 . On note alors :

$$\Delta y = y(x_1) - y(x_0)$$
 et $\Delta x = x_1 - x_0$

• Une variation infinitésimale de x: ceci revient à considérer la limite de la variation, quand x tend vers x_0 . La variation de y est alors notée dy_{x_0} et la variation de x est notée dx.

Soient $a \in I$ un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ une fonction dérivable en a alors

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$$

ainsi

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} - f'(a) = 0$$

qui peut aussi s'écrire

$$\frac{f(x) - f(a)}{x - a} - f'(a) = \varepsilon(x) \text{ avec } \lim_{x \to a} \varepsilon(x) = 0$$

autrement dit avec $\Delta x = x - a$ et $\Delta y = \Delta f = f(x) - f(a)$ on obtient

$$\Delta y = \Delta x f'(a) + \Delta x \cdot \varepsilon(x) \text{ avec } \lim_{\Delta x \to 0} \varepsilon(x) = 0$$
 (3)

Définition 5.

On définit la fonction différentielle de f en a de la manière suivante :

$$df_a: x \to f'(a)x$$

Ainsi (??) devient :

$$\Delta y = df_a(\Delta x) + \Delta x.\varepsilon(x)$$

On peut aussi noter $df_a = dy$

Exemple 16.

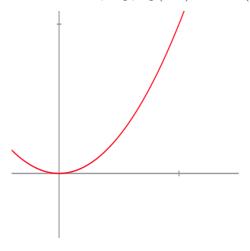
Calculer les différentielles de la fonction carrée et de la fonction identité.

Remarque 6.

On remarque que la différentielle est une fonction linéaire.

2.2 Approximation de Δy par dy

Représenter dans le graphique suivant : Δx , Δy , $dy(\Delta x)$ et $\Delta x \varepsilon(x)$.



dx en mathématiques:

dx est la fonction différentielle de la fonction identité id(x) = x

$$dx: x \to x$$

ainsi on a l'égalité de fonctions suivante

$$df_a = f'(a)dx$$

dx en physique:

En physique quand on considère une petite variation de x (variation infinitésimale de x) on note cette variation dx plutôt que Δx ce qui revient en fait à confondre la fonction dx et l'image de Δx par dx:

$$dx(\Delta x) = \Delta x$$

9

On notera que cette égalité est toujours vraie quelque soit Δx .

Il est important de noter que si l'on a $\Delta x = dx$, il n'en est rien de Δy et dy.

Théorème 6.

 $\Delta y \simeq dy$ quand Δx tend vers 0.

Démonstration 1.

Écrire la relation reliant Δy et dy et en déduire l'approximation.

Ainsi la différentielle dy réalise une **approximation** de la variation de la fonction Δy quand Δx est tend vers 0.

Remarque 7.

- On a vu que $\frac{df_a}{dx}$ peut être considéré comme une notation, mais maintenant on peut aussi le voir comme un quotient de fonctions différentielles.
- En passant de $df_a = f'(a)dx$ à $\frac{df_a}{dx}$, on a l'impression de faire une division par dx, alors qu'en fait ce sont deux écritures différentes : la première est une notation entre deux fonctions différentielles, alors que la seconde est une notation de la dérivée.

Exemple 17.

Ces notations sont à manier avec précautions mais sont très utiles.

Prenons la surface d'un cercle de rayon R et de diamètre D=2R.

On a
$$S = \pi R^2$$
 ou $S = \pi \frac{D^2}{4}$.

Dériver ces deux égalités. Qu'en pensez vous?

Exprimer dS de deux manières différentes, en fonction de dR puis de dD.

Exemple 18 (en électricité).

Une résistance R soumise à ses bornes à une différence de potentiel U est traversée par un courant continu d'intensité

$$I = \frac{U}{R}$$

- Quelle variation de l'intensité correspond-elle à une faible variation de U ? Faire le calcul pour R=100 ohms et une variation de 1 volts.
- Quelle variation de l'intensité correspond-elle à une faible variation de R? Faire le calcul pour R=100 ohms, une tension constante de 100 volts et une variation $\Delta R=1$ ohms .

2.3 Opérations sur les différentielles

Pour tous les calculs de différentielles on peut soit revenir à la définition et utiliser les règles de calculs sur les dérivées, soit utiliser directement les propriétés suivantes qui sont similaires.

Théorème 7.

Soient $\lambda \in \mathbb{R}$, $f, g: I \to \mathbb{R}$ deux fonctions différentiable sur I, alors :

- (i) f + g est différentiable sur I et $d(f + g)_a = df_a + dg_a$
- (ii) λf est différentiable sur I et $d(\lambda f)_a = \lambda df_a$
- (iii) fg est différentiable sur I et $d(fg)_a = g(a)df_a + f(a).dg_a$
- (iv) Si pour tout x appartenant à I g(x) est différent de 0 alors $\frac{f}{g}$ est différentiable sur I et $d\left(\frac{f}{g}\right)_a = \frac{g(a)df_a f(a).dg_a}{g^2(a)}$

Théorème 8.

Soient I, J deux intervalles de $\mathbb{R}, f: I \to \mathbb{R}, g: J \to \mathbb{R}$ tels que $f(I) \subset J$. Si f est différentiable sur I et si g est différentiable sur J alors $g \circ f$ est différentiable sur I et $d (g \circ f)_a = dg_{f(a)} \circ df_a$.

Exemple 19.

Soit h la fonction définie par $h(x) = \ln |\cos x|$. Avec les notations du théorème précédent, déterminer I, J, f et g puis calculer la différentielle de la fonction h.

3 Différentielle Logarithmique

Définition 6.

Soit f une fonction différentiable. Alors pour tout x où $f(x) \neq 0$ la fonction $\ln |f(x)|$ est différentiable.

On l'appelle différentielle logarithmique de f en a, la différentielle de $\ln |f|$ en a.

Théorème 9.

$$d\ln|f|_a = \frac{df_a}{f(a)}$$

Démonstration 2.

Exemple 20.

Calculer la différentielle logarithmique des fonctions suivantes en x: $f(x) = e^{\sin(x)}$ et g(x) = 2x + 1.

La différentielle logarithmique $\frac{dy}{y}$ réalise une approximation de la variation relative $\frac{\Delta y}{y}$ quand x varie de Δx . C'est la base des calculs d'incertitude en physique.

3.1 Produit et quotient des différentielles logarithmiques

Théorème 10. Soient f et g différentiables avec $f(x) \neq 0$ et $g(x) \neq 0$

(i) Si
$$y = f.g$$
 alors $\frac{dy}{y} = \frac{df}{f} + \frac{dg}{g}$

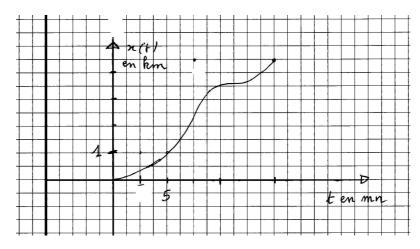
(ii) Si
$$y = \frac{f}{g}$$
 alors $\frac{dy}{y} = \frac{df}{f} - \frac{dg}{g}$

Démonstration 3. Démontrer la relation pour le produit :

Exercices TD n°1-2

Exercice 1.

La courbe ci-dessous représente la distance x parcourue par un cycliste en fonction du temps ten minutes.



- 1. Exprimer en fonction des lettres de l'énoncé la vitesse du cycliste.
- 2. Graphiquement:
- (a) Quelle est sa vitesse au t = 15'?
- (b) A quel(s) moment(s) sa vitesse est-elle la plus grande en km/h?
- (c) A quel(s) moment(s) sa vitesse est-elle la plus lente en km/h?

Exercice 2.

Parmi les notions suivantes, donner celles qui peuvent s'écrire comme un nombre dérivé.

12

- 1. Le débit de l'eau à la sortie du robinet.
- 2. L'accélération instantanée d'un véhicule.
- 3. La hauteur d'eau d'une rivière à un temps et lieu donnés.
- 4. Le nombre de voitures par heure sur une autoroute pour un lieu donné.

Exercice 3.

Étudier la dérivabilité en 0 de chacune des fonctions suivantes :

1.
$$f: x \mapsto x|x|$$

$$2. \ g: x \mapsto \frac{x}{1+|x|}$$

3.
$$h: x \mapsto \frac{1}{1+|x|}$$
.

Exercice 4.

soit la fonction f définie par : $\begin{cases} f(x) = x^2 - 1 \text{ si } x < 0 \\ f(x) = x^2 + 1 \text{ si } x \geqslant 0 \end{cases}$ Montrer qu'en $x_0 = 0$, f est dérivable à droite mais pas à gauche.

Exercice 5.

Étudier de deux façons différentes (notamment avec la règle de l'Hospital) la dérivabilité en 0

de
$$f: x \mapsto \begin{cases} \frac{\sqrt{1+x} - \sqrt{1-x}}{x} & \text{si } x \neq 0 \\ 1 & \text{sinon} \end{cases}$$

Exercice 6.

Prolonger par continuité en 0 et étudier la dérivabilité de

1.
$$f(x) = \sqrt{x} \ln x$$
.

$$2. \ g(x) = \frac{e^x - 1}{\sqrt{x}}.$$

Exercice 7.

f étant une fonction dérivable en x_0 , calculer les limites suivantes :

1.
$$\lim_{h\to 0} \frac{f(x_0-h)-f(x_0)}{h}$$

2.
$$\lim_{h\to 0} \frac{f(x_0+h)-f(x_0-h)}{h}$$

3.
$$\lim_{h\to 0} \frac{f^2(x_0+3h)-f^2(x_0-h)}{h}$$
.

Exercice 8.

Calculer f'(x) pour

1.
$$f(x) = \frac{\sin x}{1 - \cos x}$$

$$3. \ f(x) = \frac{1}{\sqrt{x^3}}$$

6.
$$f(x) = \frac{\exp(1/x) + 1}{\exp(1/x) - 1}$$

$$1 - \cos x$$

4.
$$f(x) = \sqrt{\frac{x+1}{x-1}}$$

7.
$$f(x) = \ln\left(\frac{1+\sin(x)}{1-\sin(x)}\right)$$

2.
$$f(x) = \frac{x-1}{|x+1|}$$

5.
$$f(x) = \sqrt{1 + x^2 \sin^2 x}$$

8.
$$f(x) = (x(x-2))^{1/3}$$
.

Exercices TD n°3

Exercice 9.

Calculer les dérivées suivantes :

1.
$$\frac{dH}{d\omega}$$
 avec $H = \frac{R\omega}{1 - \omega^2}$

3.
$$\frac{dx}{dt}$$
 avec $x = \sqrt{mt^2 + pt}$

2.
$$\frac{di}{dR}$$
 avec $i = \frac{CR^2\omega}{1 - LR}$

Exercice 10.

Le sommet d'une échelle de longueur l glisse le long d'un mur vertical qui repose sur un sol horizontal. Si la vitesse du sommet de l'échelle est V_0 , quelle est la vitesse du pied de l'échelle? Indication : penser à la variation de la longueur de l'échelle.

Exercice 11.

Une pierre jetée dans un lac produit des ondes concentriques. Si le rayon de l'onde croît à la vitesse de 5m par seconde, à quelle vitesse croît la surface circulaire de cette onde quand $R=12\mathrm{m}$?

Exercice 12.

Dans la fonction $y = 2x^3 + 6$, quelle est la valeur de x au point où y croît 24 fois plus vite que x?

Exercice 13.

- 1. Calculer $\lim_{x\to 0} \frac{\cos x 1}{x^2}$
- 2. On considère la fonction f définie par : $\left\{\begin{array}{l} \frac{\cos x 1}{\sin x} \text{ pour } x \in \left]0; \frac{\pi}{2}\right] \right.$

Étudier la dérivabilité de f sur son ensemble de définition et déterminer f'.

Exercices TD n°4-5

Exercice 14.

La fonction $f: x \mapsto \cos(\sqrt{x})$ est-elle dérivable en 0 ? de classe C^1 en 0 ?

Exercice 15 (Formule de Leibnitz). (Facultatif)

Étant données u et v des fonctions dérivables à l'ordre n sur l'intervalle I, la dérivée d'ordre n du produit uv sur cet intervalle est :

$$(uv)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} u^{(k)} v^{(n-k)}.$$

- 1. Calculer la dérivée d'ordre n de $x\mapsto x^2e^x$.
- 2. Montrer par récurrence la formule de Leibnitz.

Exercice 16.

Soit
$$f: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto e^x \text{ si } x < 0 \\ x \mapsto ax^2 + bx + c \text{ sinon} \end{cases}$$

Déterminer a, b, c pour que f soit C^2 (et C^3 ?).

Exercice 17.

En économie, on appelle coût marginal le coût supplémentaire pour produire une unité supplémentaire.

- 1. Exprimer le coût marginal.
- 2. Si on appelle C(q) le coût pour q unités produites, on écrit que le coût marginal est égal à $\frac{dC}{dq}$. Commenter cette formule.

Exercice 18.

Calculer les différentielles des fonctions suivantes :

$$1. f(t) = t \ln(t)$$

$$2. \ G = \frac{R}{\sin R}$$

3. $f = r \cos \theta$, r et θ sont des fonctions qui dépendent de t.

Exercice 19.

Calculer les différentielles logarithmiques des fonctions suivantes :

1.
$$f(t) = \frac{r^{\alpha}(t)}{\theta^{\beta}(t)}$$

$$2. \ f(t) = \frac{t}{\sin t}$$

3.
$$f(t) = r(t)\theta(t)$$

$$4. f(t) = r(t) + \theta(t)$$

Exercice 20.

L'inductance d'une bobine étant, en henrys :

$$L = \frac{4\pi N^2 S}{l.10^9}$$

S section de la bobine en cm^2 , l, la longueur de la bobine en cm, et N le nombre de spires. Calculer une valeur approchée de la variation ΔL , si l augmente de 1 cm avec les valeurs suivantes:

$$N = 500, S = 500, l = 50.$$

Exercice 21.

Dans une bobine, avec résistance, le décalage du courant sur la tension, en alternatif, est donnée par $\tan \varphi = \frac{L\omega}{R}$ et $\omega = 2\pi f$. On a L=100 H, R=50 ohms, f=50 Hz.

- 1. Si f varie de $\Delta f = 2$ Hz, calculer une valeur approchée de $\Delta \tan \varphi$.
- 2. Si R varie de $\Delta R = 5$ ohms, calculer une valeur approchée de $\Delta \tan \varphi$.

Exercice 22.

La longueur et la largeur d'une plaque métallique rectangulaire croissent à la vitesse de 0,1% par degré. Quelle est la variation en pourcentage par degré de son aire?