

Étude de fonction et fonctions usuelles

Objectifs

- Connaître et appliquer le plan d'étude d'une fonction.
- Connaître les fonctions usuelles

1 Mener une étude de fonction

- 1. Déterminer le domaine de définition de f.
- 2. Déterminer le domaine d'étude de f : selon les propriétés de f il est possible d'étudier f sur un intervalle plus petit que le domaine de définition alors appelé domaine d'étude.
 - f est elle paire ou impaire?

Définition 1. Fonction paire

Soit f une fonction définie sur un ensemble I de \mathbb{R} . On dit que f est une fonction paire lorsque :

- I est symétrique par rapport à l'origine.
- $\forall x \in I, \ f(-x) = f(x)$

Exemple 1.

Les fonctions suivantes sont-elles paires sur leur domaine de définition?

$$f(x) = \frac{x^2 + \cos x + 1}{-|x| - 1}$$
; $g(x) = 2x + 2$

Propriété 1.

Une fonction est paire si et seulement si sa représentation graphique dans un repère orthogonal est symétrique par rapport à l'axe des ordonnées.

Exemple 2.

Vérifier à l'aide d'un graphique la propriété précédente.

Définition 2. Fonction impaire

Soit f une fonction définie sur un ensemble I de \mathbb{R} . On dit que f est une fonction impaire lorsque :

- I est symétrique par rapport à l'origine.
- $\forall x \in I, \ f(-x) = -f(x)$

Exemple 3.

Les fonctions suivantes sont elles impaires sur leur domaine de définition?

$$f(x) = \frac{-x^3 + \sin x}{x^2 + 1} \; ; \; g(x) = 2x + 2$$

Propriété 2.

Une fonction est impaire si et seulement si sa représentation graphique dans un repère orthogonal est symétrique par rapport à l'origine.

Exemple 4.

Vérifier à l'aide d'un graphique la propriété précédente.

- f est elle péridodique? Nous l'étudierons dans le paragraphe des fonctions trigonométriques.
- 3. Déterminer les limites aux bords du domaine de définition.
- 4. Déterminer le domaine de dérivabilité, calcul de la dérivée et dresser le tableau de variations. Préciser les valeurs importantes : les bornes du domaine d'étude, les points où la dérivée est nulle ou non définie.
- 5. Eléments graphiques remarquables

• Les branches infinies :

On a une branche infinie si x ou f(x) tendent vers $+\infty$ ou $-\infty$.

– 1er cas :
$$\lim_{x\to x_0} f(x) = \pm \infty$$
 : asymptote verticale $x=x_0$

– 2ème cas :
$$\lim_{x\to\pm\infty} f(x) = y_0$$
 : asymptote horizontale $y=y_0$

– 3ème cas :
$$\lim_{x \to \pm \infty} f(x) = \pm \infty$$
. On étudie $\lim_{x \to \pm \infty} \frac{f(x)}{x}$

(a) Si
$$\lim_{x\to\pm\infty}\frac{f(x)}{x}=\pm\infty$$
: branche parabolique de direction asymptotique Oy (exemple : la fonction exp)

(b) Si
$$\lim_{x\to\pm\infty} \frac{f(x)}{x} = 0$$
: branche parabolique de direction asymptotique Ox (exemple: la fonction $\ln x$)

(c) Si
$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = a \in \mathbb{R}^*$$
: on étudie $\lim_{x \to \pm \infty} f(x) - ax$:

i. Si
$$\lim_{x \to \pm \infty} f(x) - ax = b \in \mathbb{R}$$
 : asymptote oblique d'équation $y = ax + b$

ii. Si
$$\lim_{\substack{x\to\pm\infty\\ y=ax}} f(x)-ax=\pm\infty$$
: branche parabolique de direction asymptotique

Exemple 5.

Déterminer les branches infinies de la fonction f définie par $f(x) = \frac{2-3x^2}{x+3}$

• Tangentes remarquables :

- (a) Si la dérivée est nulle : tangente horizontale
- (b) Si la dérivée ou le taux de variation tend vers $+\infty$ ou $-\infty$: tangente verticale : point de non dérivabilité.
- (c) Demi-tangentes : obtenues en considérant f seulement à droite ou seulement à gauche en un point x_0

1.1 Fonctions majorées, minorées, bornées

Soit f une fonction de la variable réelle définie sur un domaine noté D.

Définition 3. Majorant, borne supérieure et maximum.

Soit f une fonction bornée sur un intervalle [a, b].

- Un majorant de f sur [a,b] est un réel M tel que pour tout x de [a,b], $f(x) \leq M$.
- La borne supérieure de f sur [a,b] est le plus petit des majorants. On le note $\sup_{x \in [a;b]} f(x)$
- Le maximum de f sur [a, b], est un réel M tel que pour tout x de [a, b], $f(x) \leq M$ et il existe $x_0 \in [a, b]$ tel que $M = f(x_0)$. On le note $\max_{x \in [a;b]} f(x)$

On définit de la même façon les notions de minorant, borne inférieure et minimum.

Exemple 6.

Les affirmations suivantes sont elles vraies ou fausses?

- 1. Un majorant est un maximum.
- 2. Un maximum est un majorant.
- 3. Une fonction bornée admet toujours un maximum sur [a, b].
- 4. Une fonction bornée admet toujours une borne supérieure sur [a, b].

Exemple 7.

Démontrer que la fonction f définie sur \mathbb{R} par $f(x) = \frac{|\sin(x)|}{2 + \cos(x)}$ est bornée sur \mathbb{R} .

2 Exponentielles, logarithmes, puissances

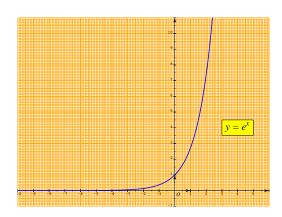
2.1 Exponentielle

Définition 4.

Il existe une unique fonction de \mathbb{R} dans \mathbb{R} , appelée exponentielle, notée exp, dérivable sur \mathbb{R} telle que :

$$\begin{cases} \exp(0) = 1\\ \exp'(x) = \exp(x), \ \forall x \in \mathbb{R} \end{cases}$$

Par définition, exp est continue et dérivable sur \mathbb{R} .



Equation fonctionnelle

$$\forall x, y \in \mathbb{R} : \begin{cases} \exp(x+y) = \exp(x) \cdot \exp(y) \\ \exp(-x) = \frac{1}{\exp(x)} \end{cases}$$

On pose : $e = \exp(1)$ et on note $e^x = \exp(x)$.

Variations

 $\forall x \in \mathbb{R}, \exp(x) > 0$ donc comme $\exp' = \exp$, alors exp est strictement croissante.

Limites aux bornes

$$\lim_{x \to +\infty} e^x = +\infty \qquad \qquad \lim_{x \to -\infty} e^x = 0$$

La courbe de exp admet une asymptote horizontale en $-\infty$ d'équation y=0 c'est à dire l'axe des abscisses.

Croissances comparées

$$\begin{cases} \forall \alpha \in \mathbb{R}^{+*}, \lim_{x \to +\infty} \frac{e^x}{x^{\alpha}} = +\infty \\ \forall \alpha \in \mathbb{R}^{+*}, \lim_{x \to -\infty} |x|^{\alpha} e^x = 0 \end{cases}$$

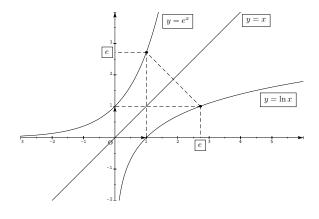
Limite à connaître

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

2.2 Logarithme népérien

Définition 5.

La fonction logarithme népérien, notée ln est la fonction réciproque de la fonction exp car exp est bijective de \mathbb{R} dans $]0;+\infty[$. La fonction ln est donc définie de $]0;+\infty[$ dans \mathbb{R} .



Variations

ln est de même sens de variations que exp ainsi ln est continue, dérivable et strictement croissante sur $]0;+\infty[$.

Dérivée

$$\forall x > 0, \ln'(x) = \frac{1}{\exp'(\ln x)} = \frac{1}{e^{\ln x}} = \frac{1}{x}$$

Limites aux bornes

$$\lim_{x \to 0^+} \ln x = -\infty \qquad \qquad \lim_{x \to +\infty} \ln x = +\infty$$

La courbe de la admet une asymptote verticale en 0.

Equation fonctionnelle

$$\forall x, y > 0 : \begin{cases} \ln(xy) = \ln(x) + \ln(y) \\ \ln\frac{1}{x} = -\ln x \end{cases}$$

Croissances comparées

$$\begin{cases} \forall \alpha \in \mathbb{R}^{+*}, \lim_{x \to +\infty} \frac{\ln x}{x^{\alpha}} = 0 \\ \forall \alpha \in \mathbb{R}^{+*}, \lim_{x \to 0^{+}} x^{\alpha} \ln x = 0 \end{cases}$$

Limite à connaître

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

Exemple 8. Étudier la fonction $f: x \mapsto \ln(1 + e^x)$

2.3 Fonctions exponentielles et logarithmes de base quelconque

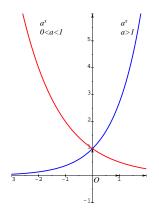
2.3.1 Fonctions exponentielles de base quelconque

Définition 6.

Soit a>0. Pour tout $x\in\mathbb{R},$ on définit l'exponentielle de base a par :

$$a^x = \exp(x \ln a) = e^{x \ln a}$$

Ainsi, l'étude d'une exponentielle de base a se ramène à celle d'une exponentielle classique du type $e^{\alpha x}$.



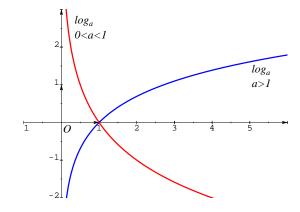
2.3.2 Fonctions logarithmes de base quelconque

Définition 7.

Soit a>0 et $a\neq 1$. Pour tout x>0, on définit le logarithme de base a par :

$$\log_a(x) = \frac{\ln x}{\ln a}$$

De même, l'étude d'une fonction logarithme de base a se ramène, à un facteur multiplicatif près à celle de la fonction ln.



2.3.3 Fonction logarithme décimal

Une fonction logarithme de base 10 est appelée logarithme décimal, il est noté log. Cette fonction est la fonction réciproque de la fonction exponentielle de base $10: x \to 10^x$. Elles donc utilisée lorsqu'on manipule des puissances de 10.

Exemple 9. Par exemple, en chimie, nous avons la formule : $[H^+] = 10^{-PH}$. En déduire PH en fonction de la concentration en $[H^+]$.

2.4 Fonctions puissances

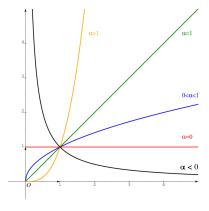
Définition 8.

Pour $\alpha \in \mathbb{R}$, on définit :

$$f_{\alpha}:\left(\begin{array}{c}\mathbb{R}_{+}^{*}\to\mathbb{R}\\x\mapsto x^{\alpha}\end{array}\right)$$

avec $x^{\alpha} = e^{\alpha \ln x}$.

Ainsi, là aussi, on se ramène à l'étude d'une exponentielle classique, sauf dans les cas α entier naturel (fonction puissance classique), entier relatif négatif (fonction inverse d'une fonction puissance classique), rationnel et on a : $x^{\frac{p}{q}} = \sqrt[q]{x^p}$.



2.5 Croissances comparées

Soient $\alpha > 0$ et a, b > 1: on a:

$$\lim_{x \to +\infty} \frac{a^x}{x^{\alpha}} = +\infty \qquad \lim_{x \to +\infty} \frac{\log_b x}{x^{\alpha}} = 0$$

$$\lim_{x \to 0} x^{\alpha} \log_b x = 0$$

On résume cela ainsi : en $+\infty$:

$$\log_b x \ll x^\alpha \ll a^x$$

3 Fonctions circulaires

3.1 Fonction périodique

Définition 9.

Soit T un réel, et f une fonction définie sur un ensemble I de \mathbb{R} . On dit qu'une fonction f est une fonction T périodique, ou de période T, lorsque :

- $\forall x \in I, \ x + T \in I.$
- $\forall x \in I, \ f(x+T) = f(x)$

Exemple 10.

Soit f la fonction définie par $f(t)=\cos(\omega t)$ pour t réel. Montrer que f est une fonction de période $\frac{2\pi}{\omega}$. ω est appelé pulsation en physique.

Proposition 1.

Soit a, b, et ω trois réels. Alors il existe trois réels ϕ , ϕ' et A tels que :

pour tout réel
$$t: a\cos(\omega t) + b\sin(\omega t) = A\sin(\omega t + \phi) = A\cos(\omega t + \phi')$$

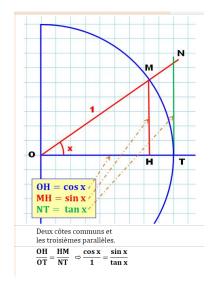
On a :
$$A = \sqrt{a^2 + b^2}$$
 , $\tan \phi = \frac{a}{b}$ et $\tan \phi' = -\frac{b}{a}$

La propriété précédente se traduit de la façon suivante en physique : le somme de deux signaux sinusoïdaux de même pulsation (et donc de même période) est un signal sinusoïdal de même pulsation (et donc de même période) avec un déphasage de ϕ .

Exemple 11.

Démontrer la propriété précédente, puis écrire sous la forme $A\sin(\omega x + \phi)$ l'expression $\cos 2x + \sin 2x$.

3.2 Le cercle trigonométrique



3.3 Fonctions trigonométriques usuelles

Nom	sinus	cosinus	tangente
Notation	sinx	cosx	tanx
Départ et arrivée	$R \rightarrow [-1,1]$	$R \rightarrow [-1,1]$	$\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi,\ k\in\mathbb{Z}\}\to\mathbb{R}$
Parité	Impaire	Paire	Impaire
Période	2π	2π	π
Dérivée	cosx	-sinx	$1 + \tan^2 x = \frac{1}{\cos^2 x}$
Monotonie	Croissante sur $[-\pi/2,\pi/2]$	Décroissante sur [0, π]	Croissante sur] – $\pi/2$, $\pi/2$ [
Courbe représentative	1- 0 -π/2 π -1-	π/2 0 π/2 π	3- 2- 1- 0 π/2 -π/2 0 π/2 -1- -2- -3-

Exemple 12.

Étudier la fonction $f: x \mapsto \tan x - \frac{1}{\tan x}$

3.3.1 Valeurs remarquables

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos(\theta)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin(\theta)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\tan(\theta)$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	

3.3.2 Formules de trigonométrie

$$\cos(-x) = \cos(x) \qquad \sin(-x) = -\sin(x)$$

$$\cos(\pi - x) = -\cos(x) \qquad \sin(\pi - x) = \sin(x)$$

$$\cos(\pi + x) = -\cos(x) \qquad \sin(\pi + x) = -\sin(x)$$

$$\cos(\frac{\pi}{2} - x) = \sin(x) \qquad \sin(\frac{\pi}{2} - x) = \cos(x)$$

$$\cos(\frac{\pi}{2} + x) = -\sin(x) \qquad \sin(\frac{\pi}{2} + x) = \cos(x)$$

3.3.3 Formules de Somme

- $\bullet \cos(a+b) = \cos(a)\cos(b) \sin(a)\sin(b)$
- $\bullet \sin(a+b) = \cos(a)\sin(b) + \cos(b)\sin(a)$

3.3.4 Formules de Linéarisation

- $\bullet \cos^2(a) = \frac{1 + \cos(2a)}{2}$
- $\bullet \sin^2(a) = \frac{1 \cos(2a)}{2}$
- $\sin(a)\cos(a) = \frac{1}{2}\sin(2a)$

3.3.5 Résoudre une équation trigonométrique

Résoudre une équation du type $\cos(x) = \cos(a)$

$$\cos(a) = \cos(b) \Leftrightarrow \begin{cases} a = b + 2k\pi, & k \in \mathbb{Z} \ (1) \\ \text{ou} \\ a = -b + 2k'\pi, & k' \in \mathbb{Z} \ (2) \end{cases}$$

Résoudre une équation du type $\sin(x) = \sin(a)$

$$\sin(a) = \sin(b) \Leftrightarrow \begin{cases} a = b + 2k\pi, & k \in \mathbb{Z} \\ \text{ou} \\ a = \pi - b + 2k'\pi, & k' \in \mathbb{Z} \end{cases} (2)$$

Résoudre une équation du type tan(x) = tan(a)

$$tan(a) = tan(b) \Leftrightarrow a = b + k\pi, \ k \in \mathbb{Z}$$

4 Fonctions hyperboliques

4.1 Cosinus et sinus hyperboliques

Définition 10. Par analogie avec les formules d'Euler, on appelle cosinus hyperbolique et sinus hyperbolique les fonctions de \mathbb{R} dans \mathbb{R} définies par :

$$\begin{cases} \operatorname{ch}: x \mapsto \frac{e^x + e^{-x}}{2} \\ \operatorname{sh}: x \mapsto \frac{e^x - e^{-x}}{2} \end{cases}$$

Continuité, dérivabilité

ch et sh sont continues et dérivables sur \mathbb{R}

Compléter les propriétés de ch et sh.

Parité

- la fonction sh est une fonction

Dérivée

$$\forall x \in \mathbb{R}, \begin{cases} \operatorname{ch}'(x) = \\ \operatorname{sh}'(x) = \end{cases}$$

Tableau de variations

x		x	
$\operatorname{ch} x$		$\operatorname{sh} x$	

Signe

Trigonométrie hyperbolique

Il existe de nombreuses formules liant ch et sh mais celle-ci est fondamentale :

$$\forall x \in \mathbb{R}, \operatorname{ch}^2 x - \operatorname{sh}^2 x = 1$$

Exemple 13. Démontrer l'égalité précédente.

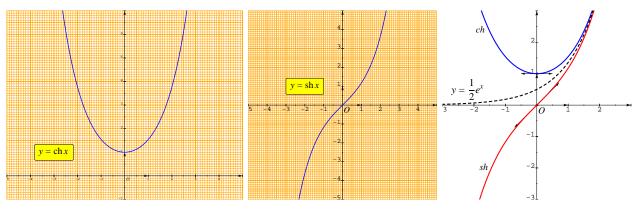
Comparaison

Comme $\operatorname{ch} x - \operatorname{sh} x = e^{-x}$ pour tout $x \in \mathbb{R}$, on a : $\lim_{x \to +\infty} \operatorname{ch} x - \operatorname{sh} x = 0$. Les courbes des fonctions ch, sh et $x \mapsto \frac{1}{2} e^x$ sont dites asymptotes.

Proposition 2.

$$\forall x \in \mathbb{R}, \operatorname{ch}(2x) = \operatorname{ch}^2 x + \operatorname{sh}^2 x \text{ et } \operatorname{sh}(2x) = 2\operatorname{ch} x.\operatorname{sh} x$$

Exemple 14. Montrer la propriété précédente.



4.2 Tangente hyperbolique

Définition 11. On appelle tangente hyperbolique la fonction th définie sur $\mathbb R$ par :

$$\forall x \in \mathbb{R}, \text{th } x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1} = \frac{1 - e^{-2x}}{1 + e^{-2x}}$$

Continuité, dérivabilité

La fonction the est continue et dérivable sur \mathbb{R} .

Parité

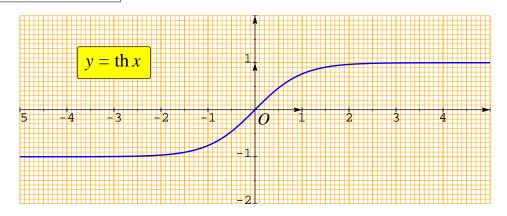
La fonction th est

Dérivée

$$\forall x \in \mathbb{R}, \text{th}'(x) = \dots$$

Tableau de variations

x	
th x	



4.2.1 Résumé des fonctions hyperboliques

Nom	sinus hyperbolique	cosinus hyperbolique	tangente hyperbolique
Définition	$shx = \frac{e^x - e^{-x}}{2}$	$chx = \frac{e^x + e^{-x}}{2}$	$thx = \frac{sh x}{ch x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$
Départ et arrivée	$R \to R$	$R \rightarrow [1, +\infty[$	R →] - 1, 1[
Parité	Impaire	Paire	Impaire
Dérivée	chx	shx	$1 - \operatorname{th}^2 x = \frac{1}{\operatorname{ch}^2 x}$
Monotonie	Croissante	Croissante sur R ₊	Croissante
Limites	$\lim_{x \to +\infty} shx = +\infty$	$\lim_{x \to +\infty} chx = +\infty$	$\lim_{x \to +\infty} thx = 1$
Courbe représentative	2- 1- 0 0 1	2- 1 0 0 1	1 0 -1 0 1
Formules	$\operatorname{ch}^{2}(x) - \operatorname{sh}^{2}(x) = 1$		

5 Manipulation de graphes

5.1 Introduction

partie A) Expérimentation

- 1) Dessiner le graphe de la fonction exponentielle.
- 2) Dessiner sur le papier les graphes des quatre fonctions suivantes : $-\exp(x)$; $\exp(x) + 1$; $\exp(x) 1$; $2\exp(x)$.
- 3) Par quelles transformations géométriques passe-t-on du graphe de l'exponentielle aux graphes tracés ?
- 4) Mêmes questions pour les quatre fonctions $\exp(-x)$; $\exp(x+1)$; $\exp(x-1)$; $\exp(2x)$.

partie B) Énoncé des correspondances

Relier chaque formule à la transformation géométrique qui lui correspond, en la précisant si possible.

- (a) -f(x); (1) translation vers le haut;
- (b) f(x) + 1; (2) translation vers le bas;
- (c) f(x) 1; (3) translation vers la gauche;
- (d) 2f(x); (4) translation vers la droite;
- (e) f(-x); (5) symétrie par rapport à l'axe des abscisses;
- (f) f(x+1); (6) symétrie par rapport à l'axe des ordonnées;
- (g) f(x-1); (7) dilatation d'un facteur 2 dans le sens vertical;
- (h) f(2x). (8) dilatation d'un facteur 1/2 dans le sens horizontal.

partie C) 1) Quelle formule correspond à une homothétie de rapport 2, centrée en l'origine?

2) À une rotation d'un demi-tour, centrée en l'origine?

5.2 Bilan

Certaines fonctions ont leur expression analytique construites à partir d'une fonction usuelle. Ces fonctions sont dites associées à une fonction de référence. L'étude de ce type de relation fonctionnelle permet d'obtenir rapidement et sans peine leurs représentations graphiques. Soient f et g deux fonctions numériques, définies respectivement sur D_f et D_g , de courbes représentatives respectives C_f et C_g dans le repère orthonormé (O, \vec{i}, \vec{j}) .

5.2.1 Translations

Théorème 1 (Translation verticale).

Si
$$q(x) = f(x) + k$$
 avec $k \in \mathbb{R}$

Alors C_g est l'image de C_f par la translation verticale de vecteur $k\vec{j}$.

Théorème 2 (Translation horizontale).

Si
$$g(x) = f(x+k)$$
 avec $k \in \mathbb{R}$

Alors C_g est l'image de C_f par la translation horizontale de vecteur $-k\vec{i}$.

5.2.2 symétries

Théorème 3 (Symétrie d'axe O_x).

Si
$$g(x) = -f(x)$$

Alors C_q est l'image de C_f par la symétrie orthogonale d'axe O_x .

Théorème 4 (Symétrie d'axe O_y).

Si
$$g(x) = f(-x)$$

Alors C_g est l'image de C_f par la symétrie orthogonale d'axe O_y .

Théorème 5 (Symétrie centrale de centre O).

Si
$$g(x) = -f(-x)$$

Alors C_q est l'image de C_f par la symétrie centrale de centre O.

5.2.3 Dilatation

Théorème 6 (Dilatation verticale).

Si
$$g(x) = k.f(x)$$
 avec $k > 0$

Alors C_q est l'image de C_f par une dilatation verticale de facteur k.

Théorème 7 (Dilatation horizontale).

Si
$$g(x) = f(k.x)$$
 avec $k > 0$

Alors C_g est l'image de C_f par une dilatation horizontale de facteur $\frac{1}{k}$.

Théorème 8 (Homothétie de centre O et de rapport k).

Si
$$g(x) = k.f(\frac{1}{k}.x)$$
 avec $k > 0$

Alors C_g est l'image de C_f par une homothétie de centre O et de rapport k.

Exercices

6 TD1-2-3

Exercice 1.

Étudier les fonctions

1.
$$f(x) = \sqrt{x^2 + x + 1}$$

2.
$$U(r) = \frac{r^2 - R}{r + R}$$
 où R est une constante non nulle

3.
$$f(x) = xe^{\frac{1}{x}}$$

$$4. \ f: x \mapsto x^{\frac{1}{x}}$$

Exercice 2.

Préciser si les fonctions suivantes sont majorées, minorées et / ou bornées sur un intervalle I que vous choisirez :

1.
$$f(x) = x^2 e^{-x}$$

2.
$$f(x) = \frac{1}{3x^2 - 2x + 1}$$

3.
$$f(x) = \frac{x^2 \cos(x)}{x^2 + 1}$$

Exercice 3. Soit $n \ge 1$ un entier. Pour chacune des fonctions suivantes, déterminer le sup, l'inf, et le minimum/maximum s'ils existent sur l'intervalle fourni.

1.
$$f_n(x) = x^n e^{-x} \text{ sur } [0, +\infty[.$$

2.
$$g_n(x) = \frac{e^{xn} - 1}{x} \text{ sur }]0, +\infty[.$$

7 TD4

Exercice 4.

Calculer les valeurs exactes des expressions suivantes

$$\cos(\frac{-3\pi}{4}) \quad \cos(\frac{5\pi}{6}) \quad \sin(\frac{123\pi}{6}) \quad \cos(\frac{\pi}{12}) \quad \sin(\frac{\pi}{12})$$

Exercice 5.

Donner la plus petite période des fonctions suivantes :

1.
$$f_1(x) = \sin(3x)$$

3.
$$f_1(x) = \sin(3x) - \cos(\frac{2x}{3})$$

$$2. f_1(x) = \cos(\omega x + \frac{\pi}{4})$$

4.
$$f_1(x) = \frac{\tan(4x)}{\tan(2x)}$$

Exercice 6.

Résoudre les équations suivantes dans \mathbb{R} et $[0; 2\pi]$.

$$1. \sin(2x) = \sin(\frac{\pi}{3})$$

$$2. \cos(3x + \pi) = \cos(\frac{\pi}{2})$$

$$3. \tan(3x) = 1$$

$$4. \sin x + \sin(2x) = 0$$

Exercice 7.

Résoudre les inéquations suivantes sur \mathbb{R} .

$$1. \sin(2x) \leqslant \frac{1}{2}$$

2.
$$\cos(3x + \pi) > -\frac{\sqrt{2}}{2}$$

3.
$$\tan(3x) > 1$$

8 TD5-6-début7

Exercice 8.

Étudier la fonction suivante :

1.
$$h: x \mapsto \operatorname{ch}\left(\frac{2x-1}{x+1}\right)$$

Exercice 9.

Considéron la fonction f définie sur \mathbb{R}^* par $f(x) = x \operatorname{sh}(\frac{1}{x})$

- 1. Étudier la parité de f.
- 2. Étudier les limites de f.
- 3. Justifier que f est dérivable sur \mathbb{R}^* et prouver que $f'(x)=ch(\frac{1}{x})(th(\frac{1}{x})-\frac{1}{x})$.
- 4. Justifier que pour tout $y \ge 0$ $th(y) \le y$, en déduire le tabeau de variations de f et la courbe représentative de f.

Exercice 10.

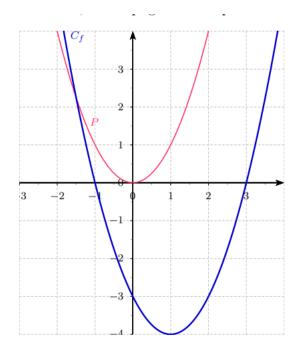
Écrire ch(x) en fonction de sh(x) et sh(2x).

Simplifier
$$u_n = \prod_{p=1}^n \operatorname{ch}\left(\frac{1}{2^p}\right)$$
, en déduire $\lim_{n \to +\infty} u_n$.

9 fin TD7-TD8

Exercice 11.

Soit f définie sur \mathbb{R} par $f(x) = x^2 - 2x - 3$. Voici sa représentation graphique dans un repère cartésien, accompagnée de la parabole d'équation $y = x^2$:



- \bullet Par quelle transformation géométrique semble-t-on obtenir C_f à partir de P ?
- Le démontrer par le calcul.

Exercice 12.

1. Donner une représentation graphique pour la fonction f définie par

$$f(x) = \begin{cases} 2x + 5 & \text{si } x \in [-3, -2] \\ 1 & \text{si } x \in [-2, 1] \\ -x + 2 & \text{si } x \in [1, 5] \end{cases}$$

- 2. Soit h la fonction définie par h(x) = -f(x). Préciser la transformation associée puis donner le graphe et l'expression de h.
- 3. Même question pour i(x) = f(-x)
- 4. Même question pour g(x) = f(x+1) + 2

Exercice 13.

1. Tracer le plus rapidement possible les graphes des applications suivantes. On commencera par tracer le graphe de la fonction élémentaire utilisée (sinus, cosinus, etc.).

$$f_1(x) = \sin(x) + 1$$
; $f_2(x) = -\cos(x)$; $f_3(x) = \ln(-x)$; $f_4(x) = 2\sqrt{x}$; $f_5(x) = \sin(2x)$; $f_6(x) = \sqrt{x+1}$

2. Plus difficile : $f_7(x) = 2\sin(x) + 1$; $f_8(x) = \ln(2x + 1)$; $f_9(x) = \sin(2x) + 1$; $f_{10}(x) = 2\ln(x + 1)$.