

CURVILINEAR INTEGRAL

1 Curvilinear Integral

1.1 Introduction : work of a force

In what follows, it will be important to keep in mind that we shall be working on curves C that will be parametrized in terms of a single variable as follows,

Example 1 (Examples of parametric curves).

- 1. Let's consider a parametric curve defined by r(t) = (x(t), y(t)) with x(t) = 2t + 1 and $y(t) = t^2$. Plot M(t) for the parameters 0, 1, 2.
- 2. Draw this parametric curve $x(t) = r \cos(t)$ $y(t) = r \sin(t)$
- 3. You get a cartesian equation : y = f(x), give a parametric equation.

Let's consider a force \vec{F} with coordinates (F_X, F_Y) in an orthonormal frame (O, \vec{i}, \vec{j}) , applied to M. We assume that M browses along a parametric curve (C). Its position is given by its parametric coordinates (x(t), y(t)) for $t \in [a, b]$, the force \vec{F} depends on the position of M, that is $\vec{F}(F_X(t), F_Y(t))$.

We approximate the work of \vec{F} on (C) by $W = \sum \overrightarrow{M_i M_{i+1}} \cdot \vec{F}$, with $M_i M_{i+1}$ small thus we get $\overrightarrow{M_i M_{i+1}}$ has for coordinates (dx, dy). Thus the dot product $\overrightarrow{M_i M_{i+1}} \cdot \vec{F_i} = F_{xi} dx + F_{yi} dy$ If the distance $M_i M_{i+1}$ is close to 0, the sum goes to the integral : $W = \int F_X dx + F_Y dy = \int_a^b \vec{F} \cdot \vec{dl}$ with $\vec{dl}(dx(t), dy(t))$ that is $\vec{dl}(x'(t)dt, y'(t)dt)$. Note that coordinates of (F_X, F_Y) depends on x and y so we could write: $W = \int f(x, y) dx + g(x, y) dy$ Thus we have $W = \int_a^b F_X(t)x'(t) + F_Y(t)y'(t)dt$ This integral is called the *circulation* \vec{F} along (C).

Example 2.

Compute the work of the weight for a mobile (its mass is m) moving on [AB] from A(0, 1) to B(1, 0).

1.2 To integrate a differential form

1.2.1 General case

Definition 1.

In this section, we will work with a differential form ω from Ω to \mathbb{R} defined by $\omega(x,y) = P(x,y)dx + Q(x,y)dy$, where P et Q are two functions of differentiability class C^1 defined from Ω to \mathbb{R} where Ω is an open set of \mathbb{R}^2 .

To simplify, ω is defined on \mathbb{R}^2 , but all the formula could be generalized for a linear form \mathbb{R}^p to \mathbb{R} .

Example 3.

Let P(x,y) = 2xy and $Q(x,y) = x^2$, write the associated differential form.

Definition 2.

Let (C) be a parametric curve (x(t), y(t)) with $t \in [a, b]$. Then the curvilinear integral ω along (C) is defined by :

$$\oint_{(C)} P(x,y)dx + Q(x,y)dy = \int_a^b P(x(t),y(t))x'(t) + Q(x(t),y(t))y'(t)dt$$

Example 4.

Let $\omega = xydx + xdy$ Calculate $\oint_{(C)} \omega$, where (C) has for equation : $y = \sqrt{x}$, x goes from 1 to 2.

Remarque 1.

The parameterization of (C) implies an orientation of the curve, and in particular we have:

Proposition 1.

Let (C^+) be the curve (C) with a direction and (C^-) be the curve in the other direction. Thus we get : $\oint_{(C^+)} \omega = -\oint_{(C^-)} \omega$

Proposition 2.

The integral of a function does not depend on the parametric representation of the curve, the curve is described in the same direction.

Example 5.

Let $\dot{\omega} = xy^2 dx - x^2 y dy$

Let (C) be the circle with those parametric representations $\begin{cases} x(t) = \cos(t) \\ y(t) = \sin(t) \end{cases} \text{ and } \begin{cases} x(t) = \sin(t) \\ y(t) = \cos(t) \end{cases}$

Calculate $\oint_{(C)} \omega$ using the two parametrizations, we use the trigonometrical direction for the curve.

1.2.2 Exact differential forms

Definition 3.

 ω is an exact differential form if there exists a function u such that $\omega = du$, where $\omega = \frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial u}dy$.

Proposition 3.

We assume that Ω is simply connected open space of \mathbb{R}^2 (informally, an object in our space is simply connected if it consists of one piece and does not have any holes that pass all the way through it. For example, neither a doughnut nor a coffee cup with a handle is simply connected,), then the differential form ω is exact if and only if:

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

Example 6. Let ω be defined by $\omega = xy^2 dx - x^2 y dy$. Is ω an exat differential form ?

Proposition 4.

If ω is an exact differential form ($\omega = du$), and (C) = \widehat{AB} then :

- The integral of ω along a closed curve is zero
- The integral of ω along a curve only depends on the first and the last points so $\oint_{(C)} \omega = u(B) u(A)$

Example 7. Prove the previous property.

Example 8. Let ω_1 and ω_2 defined by $\omega_1 = xy^2 dx - x^2 y dy$ and $\omega_2 = x dx + y dy$. Calculate the curvilinear curve for those forms on the circle of center 0 et radius 1.

1.3 Green-Riemann Formula or theorem

1.3.1 Formula

Let C be a positively oriented, piecewise smooth, simple closed curve in a plane, and let D be the region bounded by C. If P = P(x, y) and Q = Q(x, y) are functions of (x, y) defined on an open region containing D and having continuous partial derivatives there, then

$$\iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \oint_{(C)} P dx + Q dy$$

where the path of integration along C is anticlockwise.

Remarque 2.

This allows to compute a double integral using a curvilinear integral. The choice for P and Q is not unique. We choose P and Q to simplify our computations. This formula is also used to compute a curvilinear integral using a double integral.

Example 9. Calculate $I = \iint_D y dx dy$ where $D = \{(x, y) \in \mathbb{R}^2/x^2 + y^2 \leq 1\}$ directly and using the above formula.

1.3.2 Area calculus

Proposition 5.

Let D be a compact of frontier (C). Then the area A of K is equal to :

$$A = \iint_{D} dx dy = \frac{1}{2} \oint_{(C)} x dy - y dx = \oint_{(C)} x dy = \oint_{(C)} -y dx$$

2 Exercices

Exercice 1.

Let's consider the differential form $\omega = 2xe^{y}dx + x^{2}e^{y}dy$, defined on \mathbb{R}^{2} . Prove that ω is exact. Find antiderivatives on \mathbb{R}^{2} .

Exercice 2.

Let's consider the differential form $\omega = \frac{2x}{y}dx - \frac{x^2}{y^2}dy$, defined on the half plane $U = \{(x, y) \in \mathbb{R}^2 : x \in \mathbb{R}^2\}$

$$\mathbb{R}^2; y > 0 \}.$$

- 1. Prove that ω is exact.
- 2. Calculate $\oint_{(C)} \omega$ where (C) a piecewise C¹ curve with the starting point A(1,2) and last point B(3,8).

Exercice 3.

Let's consider the differential form $\omega = (x + y)dx + (x - y)dy$. defined on the half-plane $U = \{(x, y) \in \mathbb{R}^2; y > 0\}.$

- 1. Prove that ω is exact.
- 2. Calculate $\oint_{(C)} \omega$ where (C) a piecewise C¹ curve with the starting point A(1,2) and the last point B(3,8).

Exercice 4.

Calculate the curvilinear integral $\oint_{\omega} \omega$ in the following examples :

- 1. $\omega = xydx + (x + y)dy$ where (C) is the arc of the parabola $y = x^2, -1 \le x \le 2$, we use the clockwise direction.
- 2. $\omega = y \sin x dx + x \cos y dy$ where (C) is the part of the line [OA] from O(0,0) to A(1,1).

Exercice 5.

Calculate the curvilinear integral $\omega = x^2 dx - xy dy$ along :

- 1. the part of the line [OB] from O(0,0) to B(1,1).
- 2. the arc of the parabola $x = y^2, 0 \leqslant x \leqslant y$, we use the clockwise direction.

Exercice 6.

Calculate the curvilinear integral $\omega = \frac{x-y}{x^2+y^2}dx + \frac{x+y}{x^2+y^2}dy$ along the square ABCD, avec A(1,1), B(-1,1), C(-1,-1) and D(1,-1), we use the clockwise direction.

Exercice 7. Compute Green-Riemann's formula

1. $\iint_{D} y \, dx \, dy \text{ where } D = \{(x, y) \in \mathbb{R}^2 / (x - 1)^2 + y^2 \leqslant 1 ; y \ge 0\},$ 2. Let 0 < b < a. $\iint_{D} \left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right) dx dy \text{ where } D = \{(x, y) \in \mathbb{R}^2 / \frac{x^2}{a^2} + \frac{y^2}{b^2} \leqslant 1\}$