## CURVILINEAR INTEGRAL

## 1 Curvilinear Integral

### 1.1 Introduction : work of a force

In what follows, it will be important to keep in mind that we shall be working on curves C that will be parametrized in terms of a single variable as follows,

Example 1 (Examples of parametric curves).

1. Let's consider a parametric curve defined by $r(t)=(x(t), y(t))$ with $x(t)=2 t+1$ and $y(t)=t^{2}$. Plot $M(t)$ for the parameters $0,1,2$.
2. Draw this parametric curve $x(t)=r \cos (t) \quad y(t)=r \sin (t)$
3. You get a cartesian equation : $y=f(x)$, give a parametric equation.

Let's consider a force $\vec{F}$ with coordinates ( $F_{X}, F_{Y}$ ) in an orthonormal frame ( $O, \vec{i}, \vec{j}$ ), applied to $M$. We assume that $M$ browses along a parametric curve ( $C$ ). Its position is given by its parametric coordinates $(x(t), y(t))$ for $t \in[a, b]$, the force $\vec{F}$ depends on the position of $M$, that is $\vec{F}\left(F_{X}(t), F_{Y}(t)\right)$.


We approximate the work of $\vec{F}$ on (C) by $W=\sum \overrightarrow{M_{i} M_{i+1}} \cdot \vec{F}$, with $M_{i} M_{i+1}$ small thus we get $\overrightarrow{\mathcal{M}_{\mathrm{i}} \mathcal{M}_{\mathrm{i}+1}}$ has for coordinates ( $\mathrm{d} x, d y$ ). Thus the dot product $\overrightarrow{\mathcal{M}_{\mathrm{i}} \mathcal{M}_{\mathrm{i}+1}} \cdot \overrightarrow{\mathrm{~F}_{\mathrm{i}}}=F_{x i} d x+F_{y i} d y$ If the distance $M_{i} M_{i+1}$ is close to 0 , the sum goes to the integral: $W=\int F_{X} d x+F_{Y} d y=\int_{a}^{b} \vec{F} \cdot \overrightarrow{d l}$ with $\overrightarrow{d l}(d x(t), d y(t))$ that is $\overrightarrow{d l}\left(x^{\prime}(t) d t, y^{\prime}(t) d t\right)$. Note that coordinates of $\left(F_{X}, F_{Y}\right)$ depends on $x$ and $y$ so we could write: $W=\int f(x, y) d x+g(x, y) d y$
Thus we have $W=\int_{a}^{b} F_{X}(t) x^{\prime}(t)+F_{Y}(t) y^{\prime}(t) d t$
This integral is called the circulation $\vec{F}$ along (C).

## Example 2.

Compute the work of the weight for a mobile (its mass is $m$ ) moving on $[A B]$ from $A(0,1)$ to $B(1,0)$.

### 1.2 To integrate a differential form

### 1.2.1 General case

Definition 1.
In this section, we will work with a differential form $\omega$ from $\Omega$ to $\mathbb{R}$ defined by $\omega(x, y)=$ $P(x, y) d x+Q(x, y) d y$, where $P$ et $Q$ are two functions of differentiability class $C^{1}$ defined from $\Omega$ to $\mathbb{R}$ where $\Omega$ is an open set of $\mathbb{R}^{2}$.
To simplify, $\omega$ is defined on $\mathbb{R}^{2}$, but all the formula could be generalized for a linear form $\mathbb{R}^{p}$ to $\mathbb{R}$.

## Example 3.

Let $P(x, y)=2 x y$ and $Q(x, y)=x^{2}$, write the associated differential form.

## Definition 2.

Let (C) be a parametric curve $(x(t), y(t))$ with $t \in[a, b]$.
Then the curvilinear integral $\omega$ along (C) is defined by :

$$
\oint_{(C)} P(x, y) d x+Q(x, y) d y=\int_{a}^{b} P(x(t), y(t)) x^{\prime}(t)+Q(x(t), y(t)) y^{\prime}(t) d t
$$

## Example 4.

Let $\omega=x y d x+x d y$
Calculate $\oint_{(C)} \omega$, where (C) has for equation :
$y=\sqrt{x}, x$ goes from 1 to 2.

## Remarque 1.

The parameterization of (C) implies an orientation of the curve, and in particular we have:

## Proposition 1.

Let $\left(\mathrm{C}^{+}\right)$be the curve ( C ) with a direction and $\left(\mathrm{C}^{-}\right)$be the curve in the other direction.
Thus we get : $\oint_{\left(\mathrm{C}^{+}\right)} \omega=-\oint_{\left(\mathrm{C}^{-}\right)} \omega$

## Proposition 2.

The integral of a function does not depend on the parametric representation of the curve, the curve is described in the same direction.

## Example 5.

Let $\omega=x y^{2} d x-x^{2} y d y$
Let (C) be the circle with those parametric representations $\left\{\begin{array}{l}x(t)=\cos (t) \\ y(t)=\sin (t)\end{array}\right.$ and $\left\{\begin{array}{l}x(t)=\sin (t) \\ y(t)=\cos (t)\end{array}\right.$ Calculate $\oint_{(\mathrm{C})} \omega$ using the two parametrizations, we use the trigonometrical direction for the curve.

### 1.2.2 Exact differential forms

Definition 3.
$\omega$ is an exact differential form if there exists a function $u$ such that $\omega=d u$, where $\omega=$ $\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y$.

## Proposition 3.

We assume that $\Omega$ is simply connected open space of $\mathbb{R}^{2}$ (informally, an object in our space is simply connected if it consists of one piece and does not have any holes that pass all the way through it. For example, neither a doughnut nor a coffee cup with a handle is simply connected, ), then the differential form $\omega$ is exact if and only if:

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}
$$

Example 6. Let $\omega$ be defined by $\omega=x y^{2} d x-x^{2} y d y$. Is $\omega$ an exat differential form ?

## Proposition 4.

If $\omega$ is an exact differential form $(\omega=d u)$, and $(C)=\widehat{A B}$ then :

- The integral of $\omega$ along a closed curve is zero
- The integral of $\omega$ along a curve only depends on the first and the last points so $\oint_{(\mathrm{C})} \omega=$ $u(B)-u(A)$

Example 7. Prove the previous property.
Example 8. Let $\omega_{1}$ and $\omega_{2}$ defined by $\omega_{1}=x y^{2} d x-x^{2} y d y$ and $\omega_{2}=x d x+y d y$. Calculate the curvilinear curve for those forms on the circle of center 0 et radius 1 .

### 1.3 Green-Riemann Formula or theorem

### 1.3.1 Formula

Let $C$ be a positively oriented, piecewise smooth, simple closed curve in a plane, and let $D$ be the region bounded by C. If $P=P(x, y)$ and $Q=Q(x, y)$ are functions of ( $x, y$ ) defined on an open region containing $D$ and having continuous partial derivatives there, then

$$
\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y=\oint_{(C)} P d x+Q d y
$$

where the path of integration along $C$ is anticlockwise.

## Remarque 2.

This allows to compute a double integral using a curvilinear integral. . The choice for P and Q is not unique. We choose P and Q to simplify our computations. This formula is also used to compute a curvilinear integral using a double integral.

Example 9. Calculate $I=\iint_{D} y d x d y$ where $D=\left\{(x, y) \in \mathbb{R}^{2} / x^{2}+y^{2} \leqslant 1\right\}$ directly and using the above formula.

### 1.3.2 Area calculus

Proposition 5.
Let $D$ be a compact of frontier (C). Then the area $A$ of $K$ is equal to :

$$
A=\iint_{D} d x d y=\frac{1}{2} \oint_{(C)} x d y-y d x=\oint_{(C)} x d y=\oint_{(C)}-y d x
$$

## 2 Exercices

## Exercice 1.

Let's consider the differential form $\omega=2 x e^{y} d x+x^{2} e^{y} d y$, defined on $\mathbb{R}^{2}$.
Prove that $\omega$ is exact. Find antiderivatives on $\mathbb{R}^{2}$.

## Exercice 2.

Let's consider the differential form $\omega=\frac{2 x}{y} d x-\frac{x^{2}}{y^{2}} d y$, defined on the half plane $U=\{(x, y) \in$ $\left.\mathbb{R}^{2} ; y>0\right\}$.

1. Prove that $\omega$ is exact.
2. Calculate $\oint_{(C)} \omega$ where $(C)$ a piecewise $C^{1}$ curve with the starting point $A(1,2)$ and last point $B(3,8)$.

## Exercice 3.

Let's consider the differential form $\omega=(x+y) \mathrm{d} x+(x-y) d y$. defined on the half-plane $U=\left\{(x, y) \in \mathbb{R}^{2} ; y>0\right\}$.

1. Prove that $\omega$ is exact.
2. Calculate $\oint_{(C)} \omega$ where $(C)$ a piecewise $C^{1}$ curve with the starting point $A(1,2)$ and the last point $B(3,8)$.

## Exercice 4.

Calculate the curvilinear integral $\oint_{(\mathrm{C})} \omega$ in the following examples :

1. $w=x y d x+(x+y) d y$ where $(C)$ is the arc of the parabola $y=x^{2},-1 \leqslant x \leqslant 2$, we use the clockwise direction.
2. $\omega=y \sin x d x+x \cos y d y$ where (C) is the part of the line $[O A]$ from $O(0,0)$ to $A(1,1)$.

## Exercice 5.

Calculate the curvilinear integral $\omega=x^{2} d x-x y d y$ along :

1. the part of the line $[\mathrm{OB}]$ from $\mathrm{O}(0,0)$ to $\mathrm{B}(1,1)$.
2. the arc of the parabola $x=y^{2}, 0 \leqslant x \leqslant y$, we use the clockwise direction.

## Exercice 6.

Calculate the curvilinear integral $\omega=\frac{x-y}{x^{2}+y^{2}} d x+\frac{x+y}{x^{2}+y^{2}} d y$ along the square $A B C D$, avec $\mathrm{A}(1,1), \mathrm{B}(-1,1), \mathrm{C}(-1,-1)$ and $\mathrm{D}(1,-1)$, we use the clockwise direction.
Exercice 7. Compute Green-Riemann's formula

1. $\iint_{D} y d x d y$ where $D=\left\{(x, y) \in \mathbb{R}^{2} /(x-1)^{2}+y^{2} \leqslant 1 ; y \geqslant 0\right\}$,
2. Let $0<b<a$. $\iint_{D}\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right) d x d y$ where $D=\left\{(x, y) \in \mathbb{R}^{2} / \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leqslant 1\right\}$
