

COMPLEX NUMBERS

Learning objectives

- To know the rectangular and the polar form of a complex number.
- To be able to solve a complex equation.
- To become familiar with linearizing a sine and a cosine.

Definition 1. Let's denote \mathbb{C} the set of all complex numbers. The construction of the field of complex numbers is quite technical. A purely imaginary unit is defined, denoted by i such that:

$$i^2 = -1$$

The letter i refers to imaginary.

In electricity, complex numbers are very useful but the letter i refers to the intensity that is the reason why we use the letter j to denote a complex number.

There exists many ways to write a compex number z, depending on the framework.

1 Rectangular form

1.1 Definition and properties

This is the "classical" way to write a complex number.

Definition 2. We have for all complex number $z \in \mathbb{C}$:

$$z = a + ib$$
, $(a, b) \in \mathbb{R}^2$

a is called the real part of z and we denote : a = Re(z) b is called the imaginary part of z and we denote : b = Im(z)

Example 1. Find the real part and the imaginary part of z = 2 - 3i.

Definition 3. Affix and image

Each complex number z is associated to a point M in the Cartesian plane $(O, \overrightarrow{i}, \overrightarrow{j})$, such that its coordinates are the real part and the imaginary part of z. We say that M is the **image** of z and that z is the **affix** of M.

FIGURE 1 – Graphic interpretation of a complex number

Example 2. Draw the complex number with affix 2-3i

Remark 1. There is no i in the imaginary part.

Property 1. Two complex numbers are equal z and z' are equal if and only if Re(z) = Re(z') and Im(z) = Im(z').

Example 3. Solve the equation : (x+2i)(1+3i) = 2i(1+xi) where x is a real.

Addition and multiplicative properties are the same as in \mathbb{R} knowing that $i^2 = -1$.

Example 4. Find the rectangular form of (1+2i)(2-3i).

1.2 Complex conjugate

Definition 4. Let z = a + ib be a complex number, then its conjugate is : $\overline{z} = a - ib$.

Remark 2. Conjugate

Graphically the point M' of affix \overline{z} and the point M of affix z are symmetrical over the x-axis.

FIGURE 2 – Complex conjugate

Remark 3. In Physics, if $i(t) = I_0 \cos(\omega t)$, the complex intensity is denoted by $\underline{I} = I_0 e^{j\omega t}$ and the conjugate \underline{I} is denoted by \underline{I}^* .

Example 5. Find the complex conjugate of 1 + i(2 + 3i).

We could simplify expressions with z and \bar{z} knowing that:

$$z + \overline{z} = 2 \operatorname{Re}(z)$$
 et $z - \overline{z} = 2i \operatorname{Im}(z)$

Property 2.

$$\frac{\overline{z+z'} = \overline{z} + \overline{z'}}{\overline{zz'} = \overline{z}\overline{z'}} = \frac{\overline{z}}{\overline{z'}}$$

$$\frac{\overline{z}}{\overline{z'}} = \frac{\overline{z}}{\overline{z'}}$$

Example 6. Prove that $\overline{zz'} = \overline{z}\overline{z'}$.

Remark 4. The rectangular form of $\frac{z}{z'}$ is got by multipliying the numerator and the denominator by the conjugate of z', $\overline{z'}$.

Example 7. Find the rectangular form of $\frac{1+2i}{3i+2}$.

1.3 Modulus

Definition 5. The modulus of z = a + bi, with a and b two real numbers is equal to $\sqrt{a^2 + b^2}$, we denote it by |a + bi|.

Remark 5. Let z be the affix of M. |z| is the distance OM.

Example 8. Find the modulus of 2 - 5i.

Property 3. Relation between modulus et conjugate : $|z|^2 = z\bar{z}$

Example 9. Solve the equation : $z(\bar{z}+1)=z+2+i$. Find M(z) such that $(\bar{z}+2-3i)(z+2+3i)=4$.

Theorem 1. For all $z, z' \in \mathbb{C}$, $|zz'| = |z| \cdot |z'|$, $\left| \frac{z}{z'} \right| = \frac{|z|}{|z'|}$ et $|z + z'| \le |z| + |z'|$

Example 10.

- 1. Compute the modulus of $\frac{1-i}{i+\sqrt{3}}$
- 2. Prove that $\left|\frac{z}{z'}\right| = \frac{|z|}{|z'|}$

2 Rectangular and polar forms

2.1 Trigonometric formulae

2.1.1 Angles

Property 4.

$$\cos(-x) = \cos(x) \qquad \sin(-x) = -\sin(x)$$

$$\cos(\pi - x) = -\cos(x) \qquad \sin(\pi - x) = \sin(x)$$

$$\cos(\pi + x) = -\cos(x) \qquad \sin(\pi + x) = -\sin(x)$$

$$\cos(\frac{\pi}{2} - x) = \sin(x) \qquad \sin(\frac{\pi}{2} - x) = \cos(x)$$

$$\cos(\frac{\pi}{2} + x) = -\sin(x) \qquad \sin(\frac{\pi}{2} + x) = \cos(x)$$

2.1.2 Fundamental values

Property 5.

1 Toperty 0.					
θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos(\theta)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin(\theta)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\tan(\theta)$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	

2.2 Polar form

Definition 6. For all complex number $z = a + bi \in \mathbb{C}$, there exists two real numbers ρ and θ such that:

$$z = \rho \left(\cos(\theta) + i\sin(\theta)\right)$$

thus:

$$z = [\rho; \theta]$$

To find the polar form knowing the rectangular one

- ρ is called the modulus of z and we have : $\rho = |z| = \sqrt{a^2 + b^2} = \sqrt{z\overline{z}}$
- θ is called the argument of z and θ is denoted by arg(z) and defined by :

$$\begin{cases} \cos(\theta) = \frac{a}{\rho} \\ \sin(\theta) = \frac{b}{\rho} \end{cases}$$
 The argument of z can increase by any integer multiple of 2π and still give the same angle.

Example 11. Find the polar form of $1 - i\sqrt{3}$.

Corollary 1. Two complex numbers, written in their polar form, are equal if and only if they have the same modulus and the same argument at 2π .

Example 12. Write this property using mathematical symbols.

In electricity we often use the tangente function and write $\theta = \tan^{-1} \frac{Im z}{Re z}$ at π .

Example 13. Find an approximation for the argument of -1 + 2i.

Theorem 2.

Whatever are θ and θ' in \mathbb{R}^2 we have :

$$(\cos(\theta) + i\sin(\theta))(\cos(\theta') + i\sin(\theta')) = \cos(\theta + \theta') + i\sin(\theta + \theta')$$

Example 14. Prove this theorem.

Corollary 2.

For all
$$z, z' \in \mathbb{C}$$
, $\arg(zz') = \arg(z) + \arg(z')$ and $\arg\left(\frac{z}{z'}\right) = \arg(z) - \arg(z')$

Corollary 3.

For all $\theta \in \mathbb{R}$ and for all $n \in \mathbb{N}$, we have :

$$(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$$

This formula is known as De Moivre's formulae.

2.3 Geometrical interpretation

We saw before that ρ is the distance OM. θ is the angle $(\vec{i}, \overrightarrow{OM})$

Remark 6. The geometrical interpretation for θ is useful to find an argument of z.

Example 15. Let's find an argument of 1,i, -1 and -i.

2.4 Complex exponential

Definition 7. The great idea of Euler was to define the complex exponential by : for all $\theta \in \mathbb{R}$:

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

Example 16. Find the polar form of 1, i, -1 and -i.

This definition is due to the fundamental property checked by the complex exponential (the same property as for the real exponential):

Theorem 3. For all $\theta, \theta' \in \mathbb{R}$ we have : $e^{i\theta}.e^{i\theta'} = e^{i(\theta+\theta')}$

Corollary 4. For all $\theta, \theta' \in \mathbb{R}$ we have : $\frac{1}{e^{i\theta}} = e^{-i\theta}$; $\frac{e^{i\theta}}{e^{i\theta'}} = e^{i(\theta - \theta')}$

Corollary 5. For all $\theta \in \mathbb{R}$ and for all $n \in \mathbb{N}$, we have : $(e^{i\theta})^n = e^{in\theta}$. With the polar form we get :

$$(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$$

This formula is called De Moivre's formula.

Example 17. Justify that this corollary is a consequence of the previous properties.

Another fundamental result is:

Theorem 4. For all $\theta \in \mathbb{R}$, $\overline{e^{i\theta}} = e^{-i\theta}$

This theorem is useful to compute the modulus of complex numbers which are a sum of two complex exponential thanks to the formula : $|z|^2 = z\overline{z}$

2.5 Polar form of complex numbers

Definition 8. Let z be a complex number : we set r = |z| and $\theta = \arg z$. Thus we get :

$$z = r(\cos(\theta) + i\sin(\theta)) = re^{i\theta}$$

This way of writting $z = re^{i\theta}$ is called the polar form of the complex number z.

Example 18. Find the polar form of : $z = \frac{1}{2} + \frac{1}{2}i$

Property 6. Let's define $z_1 = \rho_1 e^{i\theta_1}$ and $z_2 = \rho_2 e^{i\theta_2}$. We have :

$$z_1 z_2 = \left[\rho_1 \rho_2; \theta_1 + \theta_2\right]$$
$$\frac{z_1}{z_2} = \left[\frac{\rho_1}{\rho_2}; \theta_1 - \theta_2\right]$$
$$z_1^n = \left[\rho_1^n; n\theta_1\right]$$

Corollary 6. For all $z, z' \in \mathbb{C}$, $\arg(zz') = \arg(z) + \arg(z')$ and $\arg\left(\frac{z}{z'}\right) = \arg(z) - \arg(z')$

Property 7. Euler's formulae.

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$
 $\sin x = \frac{e^{ix} - e^{-ix}}{2i}$

Linearization 2.6

To linearize is to transform a product as a sum. In particular we express $\cos^n(x)$ or $\sin^n(x)$ a sa sum of $\cos(nx)$ and of $\sin(nx)$.

This is very useful in integral calculus. To linearize the cosine and the sine function, we distinguish several steps:

- We use Euler's formulae to write the sine and the cosine.
- We develop the expression using Newton's formula : $(a+b)^n = \sum_{k=0}^{k=n} \binom{n}{k} a^k b^{n-k}$
- Then we group terms in pair to make appear sines and cosines with Euler's formulae.

Video : Video sur la linearisation des cos et sin

Example 19.

Linearize $\cos^3(x)$.

3 Square roots of a complex number

Reminder of the definition of a square root in \mathbb{R} 3.1

For every positive x there exists a **unique positive** number y such $y^2 = x$. This number y is called **the** square root of x.

For example $(-3)^2 = 9$ and $3^2 = 9$ as 3 > 0 then 3 is **the** square root of 9 and we note $\sqrt{9} = 3$.

3.2 Notion of square root in \mathbb{C}

We have just seen that in \mathbb{R} , it is the notion of a positive number which makes it possible to define the number $\sqrt{\ }$.

But in \mathbb{C} , we have for example : $i^2 = (-i)^2 = -1$, $(1+i)^2 = (-1-i)^2 = 2i$. We no longer have the positivity criterion to define the square root of -1 or 2i.

We are therefore not talking about **the** square root in \mathbb{C} , but **the** square roots, since we cannot choose, for example, between i and -i which of the two would be **the** square root?

In conclusion, \sqrt{a} , with $a \in \mathbb{C} \setminus \mathbb{R}$ makes **no sense**.

3.3 With the polar form

This method is only possible if the argument of the unknown complex number z is a well-known angle, for instance $\frac{\pi}{4}$, $\frac{\pi}{3}$, $\frac{\pi}{2}$, or a multiple. Let's focus on this method :

• Let's consider a complex number $z_1 = \rho_1 e^{i\theta_1}$, and we look for $z = \rho e^{i\theta}$ such that $z^2 = z_1$ (E).

- We identify as two complex numbers are equal if and only if they have the same modulus and the same argument(E). (Corollary 2)
- Thus we get ρ and θ in function of ρ_1 and θ_1 .
- Our goal is to find those two values.

Example 20. Find square roots of

$$z_1 = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$$

Video : Exemple de recherche de racines carrees d'un nombre complexe avec la forme exponentielle

4 n-th roots of a complex number

4.1 n-th roots of the unity

Looking for the n-th order roots of 1 is to solve $z^n = [\rho^n, n\theta] = 1$. Using the trigonometrical method, we get solutions of the form $\rho = 1$ and $\theta = 2k\pi/n$ where $k \in 0, ..., n-1$.

Example 21. Let's find the third roots of unity.

4.2 n-th roots for any complex numbers

We'll be able to compute the n-th roots of a complex number (exact values) only if its argument is a well-known angle. (if not this is a tricky problem) Let's assume that this complex number is $z = [\rho, \theta]$, with θ a well-known angle. Then, to find the n-th roots of z is to solve $Z^n = z$ with $Z = [r, \phi]$. Thus solutions are $Z_k = [\sqrt[n]{\rho}, \frac{\theta}{n} + \frac{2k\pi}{n}]$ where $k \in 0, ..., n-1$.

Example 22. Find the fifth roots of z = 1 + i.

5 To solve a complex equation

5.1 2nd degre equation with real coefs

We consider an equation with real coefficients of the type

$$ax^2 + bx + c = 0, (a, b, c, z) \in \mathbb{R}^* \times \mathbb{R}^2 \times \mathbb{C}$$

If the discriminant Δ is negative then this equation admits 2 complex solutions

$$z_1 = \frac{-b - i\sqrt{|\Delta|}}{2a}$$
$$z_2 = \frac{-b + i\sqrt{|\Delta|}}{2a}$$

Example 23. Solve in \mathbb{C} the equation $x^2 + x + 1 = 0$

5.2 Exercises

Exercise 1.

Find the rectangular form of those complex numbers :

1.
$$(2+3i)(5-i)$$
; $(-1+2i)(3i+5)$

2.
$$(1+2i)^2$$
; $(2-i)^2$

3.
$$\frac{1+2i}{1+3i}$$
; $\frac{2i}{2-3i}$

4.
$$z$$
 such that $\frac{1}{z} = \frac{1}{R} + iC\omega$

5. Give the conjugates of the results obtained in 1) et 2)

Exercise 2.

Write in function of
$$\bar{z}$$
: $\overline{\left(\frac{2iz+3}{(5z+2i)(z+1)}\right)}$

Exercise 3.

Find two complex numbers z and z' such that |z+z'| < |z| + |z'|, and two other complex numbers such that |z+z'| = |z| + |z'|

Exercise 4.

Solve in
$$\mathbb{C}$$
 the equation $\frac{2+i}{2+z-i} = \frac{2+3i}{5-2i}$

Exercise 5.

Solve in
$$\mathbb{C}$$
 the equation $\frac{3+2iz}{2+3i} = \frac{-1+2i}{i+3}$

Exercise 6.

Let R, C, L and ω be three real positive numbers. In electricity, we define

$$1. \ \frac{1}{z} = \frac{1}{jL\omega} + \frac{1}{R}$$

$$2. \ \frac{1}{z} = \frac{1}{jL\omega} + jC\omega$$

Compute the rectangular form of the previous numbers.

Exercise 7.

Write the rectangular form of those complex numbers : $e^{i\frac{\pi}{3}}$, $e^{i\frac{\pi}{4}}$, $e^{i\frac{\pi}{2}}$, $e^{i\pi}$, $e^{-i\frac{\pi}{3}}$, $e^{-i\frac{\pi}{4}}$, $e^{-i\frac{\pi}{2}}$, $e^{-i\pi}$

Exercise 8.

Write the exponential form of those complex numbers : $i, -i, 1+i, 1-i, \frac{1}{i}, \frac{1+i}{1-i}, \sqrt{3}+i, \sqrt{3}-i, -e^{i\theta}, \cos \theta - i \sin \theta, \sin \theta - i \cos \theta$

Exercise 9.

Let R, C, L and ω be real positive numbers. In electricity, we define

$$1. \ \frac{1}{z} = \frac{1}{jL\omega} + \frac{1}{R}$$

$$2. \ \frac{1}{z} = \frac{1}{jL\omega} + jC\omega$$

Compute the polar form of the previous numbers.

Exercise 10.

Calculate
$$z = (1 + \sqrt{3}i)^{13}$$
 et $(\sqrt{3} - i)^{(\text{our year})}$

Exercise 11.

Let's put $z_1 = 1 + i$, $z_2 = 1 + i\sqrt{3}$ and $z_3 = z_1z_2$.

- 1. Find the argument and the modulus of z_1, z_2, z_3 .
- 2. Let's deduce the exact values of $\cos \frac{7\pi}{12}$ and $\sin \frac{7\pi}{12}$.

Exercise 12.

Let's define
$$z_1 = 2\sqrt{6} (1+i)$$
 and $z_2 = \sqrt{2} (1+i\sqrt{3})$

- 1. Compute the complex number $\frac{z_1}{z_2}$, use its rectangular form.
- 2. Calculate the argument and the modulus of $z_1, z_2, \frac{z_1}{z_2}$
- 3. Let's deduce $\cos \frac{\pi}{12}$ and $\sin \frac{\pi}{12}$.

Exercise 13.

Let's define
$$z = e^{i\phi} + e^{i\psi}$$
.
Prove that $z = e^{i\frac{\phi+\psi}{2}} \left[e^{i\frac{\phi-\psi}{2}} + e^{i\frac{\psi-\phi}{2}} \right]$ and calculate $|z|$.

Exercise 14.

Linearize and find antiderivatives for those functions:

- $1. \cos^5 x$
- $2. \cos^2 x \sin^3 x$

Exercise 15.

Find square roots of 1+i, -i, $\sqrt{3}-i$.

Exercise 16.

Find the third roots of 2-2i.

Exercise 17.

Solve in
$$\mathbb{C}$$
, the equation : $z^4 = \frac{1-i}{1+i\sqrt{3}}$.

Exercise 18.

For all
$$z \in \mathbb{C}$$
 we put $P(z) = z^4 - 1$

- 1. Factorize P(z)
- 2. Let's deduce solutions of this equation P(z) = 0
- 3. Let's deduce solutions of this equation $\left(\frac{2z+1}{z-1}\right)^4=1$

Exercise 19.

Find the fourth order roots of 81 and -81.

Exercise 20. Solve in \mathbb{C} the equation $x^2 + 2x + 5 = 0$

Exercise 21. (optional)

Let $n \in \mathbb{N}^*$,

- 1. Solve $z^{2n} + z^n + 1 = 0$.
- 2. Solve $(z-1)^n = (z+1)^n$, and prove that the solutions are purely imaginary numbers.