

COMPLEX NUMBERS

Learning objectives

- To know the rectangular and the polar form of a complex number.
- To be able to solve a complex equation.
- To become familiar with linearizing a sine and a cosine.

Definition 1. Let's denote $\mathbb C$ the set of all complex numbers. The construction of the field of complex numbers is quite technical. A purely imaginary unit is defined, denoted by i such that :

$$
i^2 = -1
$$

The letter *i* refers to imaginary.

In electricity, complex numbers are very useful but the letter i refers to the intensity that is the reason why we use the letter j to denote a complex number.

There exists many ways to write a compex number z, depending on the framework.

1 Rectangular form

1.1 Definition and properties

This is the "classical" way to write a complex number.

Definition 2. We have for all complex number $z \in \mathbb{C}$:

$$
z = a + ib , (a, b) \in \mathbb{R}^2
$$

a is called the real part of z and we denote : $a = \text{Re}(z)$ b is called the imaginary part of z and we denote : $b = \text{Im}(z)$

Example 1. Find the real part and the imaginary part of $z = 2 - 3i$.

Definition 3. Affix and image

Each complex number z is associated to a point M in the Cartesian plane $\left(O, \overrightarrow{i}, \overrightarrow{j} \right)$, such that its coordinates are the real part and the imaginary part of z . We say that M is the image of z and that z is the affix of M.

FIGURE $1 -$ Graphic interpretation of a complex number

Example 2. Draw the complex number with affix $2 - 3i$

Remark 1. There is no i in the imaginary part.

Property 1. Two complex numbers are equal z and z' are equal if and only if $\text{Re}(z) = \text{Re}(z')$ and $\text{Im}(z) = \text{Im}(z')$.

Example 3. Solve the equation : $(x+2i)(1+3i) = 2i(1+xi)$ where x is a real.

Addition and multiplicative properties are the same as in R knowing that $i^2 = -1$.

Example 4. Find the rectangular form of $(1 + 2i)(2 - 3i)$.

1.2 Complex conjugate

Definition 4. Let $z = a + ib$ be a complex number, then its conjugate is : $\overline{z} = a - ib$.

Remark 2. Conjugate

Graphically the point M' of affix \overline{z} and the point M of affix z are symmetrical over the x-axis.

FIGURE 2 – Complex conjugate

Remark 3. In Physics, if $i(t) = I_0 \cos(\omega t)$, the complex intensity is denoted by $\underline{I} = I_0 e^{j\omega t}$ and the conjugate \underline{I} is denoted by \underline{I}^* .

Example 5. Find the complex conjugate of $1 + i(2 + 3i)$.

We could simplify expressions with z and \bar{z} knowing that :

$$
z + \overline{z} = 2 \operatorname{Re}(z)
$$
 et $z - \overline{z} = 2i \operatorname{Im}(z)$

Property 2.

 $\overline{z+z'}=\overline{z}+\overline{z'}$ $\overline{zz'} = \overline{z}\overline{z'}$ $\frac{z}{\sqrt{z}}$ z' $=$ z $\overline{z'}$

Example 6. Prove that $\overline{zz'} = \overline{z}\overline{z'}.$

Remark 4. The rectangular form of $\stackrel{2}{\--}$ $\frac{\tilde{z}}{z'}$ is got by multipliying the numerator and the denominator by the conjugate of $z', \overline{z'}.$

Example 7. Find the rectangular form of $\frac{1+2i}{2i}$ $3i + 2$.

1.3 Modulus

Definition 5. The modulus of $z = a + bi$, with a and b two real numbers is equal to $\sqrt{a^2 + b^2}$, we denote it by $|a + bi|$.

Remark 5. Let z be the affix of M. |z| is the distance OM .

Example 8. Find the modulus of $2 - 5i$.

Property 3. Relation between modulus et conjugate : $|z|^2 = z\bar{z}$

Example 9. Solve the equation : $z(\bar{z}+1) = z + 2 + i$. Find $M(z)$ such that $(\bar{z}) + 2 - 3i(z + 1)$ $2 + 3i = 4.$

Theorem 1. For all $z, z' \in \mathbb{C}$, $|zz'| = |z|.|z'|$, z z' $\Big| =$ $|z|$ $\frac{|z|}{|z'|}$ et $|z + z'| \leq |z| + |z'|$

Example 10.

1. Compute the modulus of
$$
\frac{1-i}{i+\sqrt{3}}
$$

2. Prove that
$$
\left|\frac{z}{z'}\right| = \frac{|z|}{|z'|}
$$

2 Rectangular and polar forms

2.1 Trigonometric formulae

2.1.1 Angles

Property 4.
\n
$$
\overline{\cos(-x)} = \cos(x) \qquad \sin(-x) = -\sin(x)
$$
\n
$$
\cos(\pi - x) = -\cos(x) \qquad \sin(\pi - x) = \sin(x)
$$
\n
$$
\cos(\pi + x) = -\cos(x) \qquad \sin(\pi + x) = -\sin(x)
$$
\n
$$
\cos(\frac{\pi}{2} - x) = \sin(x) \qquad \sin(\frac{\pi}{2} - x) = \cos(x)
$$
\n
$$
\cos(\frac{\pi}{2} + x) = -\sin(x) \qquad \sin(\frac{\pi}{2} + x) = \cos(x)
$$

2.1.2 Fundamental values

2.2 Polar form

Definition 6. For all complex number $z = a + bi \in \mathbb{C}$, there exists two real numbers ρ and θ such that :

$$
z = \rho \left(\cos(\theta) + i \sin(\theta) \right)
$$

thus :

$$
z = [\rho; \theta]
$$

To find the polar form knowing the rectangular one

- ρ is called the modulus of z and we have : $\rho = |z|$ = √ $a^2 + b^2 =$ √ zz
- \bullet θ is called the argument of z and θ is denoted by $arg(z)$ and defined by:

 $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $\cos(\theta) = \frac{a}{\sqrt{a}}$ ρ $\sin (\theta) = \frac{b}{b}$ ρ The argument of z can increase by any integer multiple of 2π and still give the same angle.

Example 11. Find the polar form of $1 - i$ √ 3.

Corollary 1. Two complex numbers, written in their polar form, are equal if and only if they have the same modulus and the same argument at 2π .

Example 12. Write this property using mathematical symbols.

In electricity we often use the tangente function and write $\theta = \tan^{-1} \frac{Im\ z}{D}$ Re z at π .

Example 13. Find an approximation for the argument of $-1 + 2i$.

Theorem 2.

Whatever are θ and θ' in \mathbb{R}^2 we have :

 $(\cos(\theta) + i \sin(\theta))(\cos(\theta') + i \sin(\theta')) = \cos(\theta + \theta') + i \sin(\theta + \theta')$

Example 14. Prove this theorem.

Corollary 2. For all $z, z' \in \mathbb{C}$, $\arg(zz') = \arg(z) + \arg(z')$ and $\arg(\frac{z}{z})$ z' $= \arg(z) - \arg(z')$

Corollary 3.

For all $\theta \in \mathbb{R}$ and for all $n \in \mathbb{N}$, we have :

$$
(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)
$$

This formula is known as De Moivre's formulae.

2.3 Geometrical interpretation

We saw before that ρ is the distance OM. θ is the angle (\vec{i}, \vec{OM})

Remark 6. The geometrical interpretation for θ is useful to find an argument of z. **Example 15.** Let's find an argument of 1,i, -1 and $-i$.

2.4 Complex exponential

Definition 7. The great idea of Euler was to define the complex exponential by : for all $\theta \in \mathbb{R}$:

$$
e^{i\theta} = \cos(\theta) + i\sin(\theta)
$$

Example 16. Find the polar form of 1, i, -1 and $-i$.

This definition is due to the fundamental property checked by the complex exponential (the same property as for the real exponential) :

Theorem 3. For all $\theta, \theta' \in \mathbb{R}$ we have : $e^{i\theta} \cdot e^{i\theta'} = e^{i(\theta + \theta')}$

Corollary 4. For all $\theta, \theta' \in \mathbb{R}$ we have : $\frac{1}{\sqrt{2}}$ $\frac{1}{e^{i\theta}} = e^{-i\theta}$; $\frac{e^{i\theta}}{e^{i\theta}}$ $\frac{e^{i\theta}}{e^{i\theta'}}=e^{i(\theta-\theta')}$

Corollary 5. For all $\theta \in \mathbb{R}$ and for all $n \in \mathbb{N}$, we have : $(e^{i\theta})^n = e^{in\theta}$. With the polar form we get :

$$
(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)
$$

This formula is called De Moivre's formula.

Example 17. Justify that this corollary is a consequence of the previous properties.

Another fundamental result is :

Theorem 4. For all $\theta \in \mathbb{R}$, $\overline{e^{i\theta}} = e^{-i\theta}$

This theorem is useful to compute the modulus of complex numbers which are a sum of two complex exponential thanks to the formula : $|z|^2 = z\overline{z}$

Example 18. Let $z_1 = e^{i\frac{\pi}{4}}$ and $z_2 = e^{-i\frac{\pi}{3}}$, give the polar form for z_1z_2 , z_1 $\overline{z_2}$ $, (z_1)^3, \bar{z_1}, |z_1|$

2.5 Polar form of complex numbers

Definition 8. Let z be a complex number : we set $r = |z|$ and $\theta = \arg z$. Thus we get :

$$
z = r(\cos(\theta) + i\sin(\theta)) = re^{i\theta}
$$

This way of writting $z = re^{i\theta}$ is called the polar form of the complex number z.

Example 19. Find the polar form of : $z =$ 1 2 $+$ 1 2 i

Property 6. Let's define $z_1 = \rho_1 e^{i\theta_1}$ and $z_2 = \rho_2 e^{i\theta_2}$. We have :

$$
z_1 z_2 = [\rho_1 \rho_2; \theta_1 + \theta_2]
$$

$$
\frac{z_1}{z_2} = \left[\frac{\rho_1}{\rho_2}; \theta_1 - \theta_2\right]
$$

$$
z_1^n = [\rho_1^n; n\theta_1]
$$

Corollary 6. For all $z, z' \in \mathbb{C}$, $\arg(zz') = \arg(z) + \arg(z')$ and $\arg\left(\frac{z}{z}\right)$ z' $= \arg(z) - \arg(z')$

Property 7. Euler's formulae.

$$
\cos x = \frac{e^{ix} + e^{-ix}}{2} \quad \sin x = \frac{e^{ix} - e^{-ix}}{2i}
$$

Example 20. 1. Express $cos(2x)$ using an exponential

2. Express $e^{3ix} - e^{3ix}$ with the sine and the cosine function.

2.6 Linearization

To linearize is to transform a product as a sum. In particular we express $\cos^n(x)$ or $sin^n(x)$ a sa sum of $cos(nx)$ and of $sin(nx)$.

This is very useful in integral calculus. To linearize the cosine and the sine function, we distinguish several steps :

- We use Euler's formulae to write the sine and the cosine.
- We develop the expression using Newton's formula : $(a + b)^n = \sum$ $k=n$ $k=0$ $\binom{n}{n}$ k \setminus $a^k b^{n-k}$
- Then we group terms in pair to make appear sines and cosines with Euler's formulae.

Example 21.

Linearize $\cos^3(x)$.

3 Square roots of a complex number

3.1 Reminder of the definition of a square root in $\mathbb R$

For every positive x there exists a **unique positive** number y such $y^2 = x$. This number y is called **the** square root of x . called **the** square root of *x*.
For example $(-3)^2=9$ and $3^2=9$ as $3>0$ then 3 is **the** square root of 9 and we note $\sqrt{9}=3.$

3.2 Notion of square root in C

We have just seen that in \mathbb{R} , it is the notion of a positive number which makes it possible to define the number $\sqrt{\ }$.

But in C, we have for example : $i^2 = (-i)^2 = -1$, $(1+i)^2 = (-1-i)^2 = 2i$. We no longer have the positivity criterion to define the square root of -1 or $2i$.

We are therefore not talking about the square root in \mathbb{C} , but the square roots, since we cannot choose, for example, between i and $-i$ which of the two would be **the** square root?

In conclusion, \sqrt{a} , with $a \in \mathbb{C} \backslash \mathbb{R}$ makes **no sense**.

3.3 With the polar form

This method is only possible if the argument of the unknown complex number z is a well-known angle, for instance $\frac{\pi}{4}$ 4 , $\tilde{\pi}$ 3 , π 2 , or a multiple. Let's focus on this method :

- Let's consider a complex number $z_1 = \rho_1 e^{i\theta_1}$, and we look for $z = \rho e^{i\theta}$ such that $z^2 = z_1$ (E) .
- We identify as two complex numbers are equal if and only if they have the same modulus and the same argument (E) . (Corollary 2)
- Thus we get ρ and θ in function of ρ_1 and θ_1 .
- Our goal is to find those two values.

Example 22. Find square roots of

.

$$
z_1 = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}
$$

4 n-th roots of a complex number

4.1 n-th roots of the unity

Looking for the n-th order roots of 1 is to solve $z^n = [\rho^n, n\theta] = 1$. Using the trigonometrical method, we get solutions of the form $\rho = 1$ and $\theta = 2k\pi/n$ where $k \in 0, ..., n-1$.

Example 23. Let's find the third roots of unity.

4.2 n-th roots for any complex numbers

We'll be able to compute the n-th roots of a complex number (exact values) only if its argument is a well-known angle. (if not this is a tricky problem) Let's assume that this complex number is $z = [\rho, \theta]$, with θ a well-known angle. Then, to find the n-th roots of z is to solve $Z^n = z$ with $Z = [r, \phi]$. Thus solutions are : $Z_k = [\sqrt[n]{\rho}, \frac{\theta}{n}]$ n $+$ $2k\pi$ n | where $k \in 0, ..., n - 1$.

Example 24. Find the fifth roots of $z = 1 + i$.

5 To solve a complex equation

5.1 2nd degre equation with real coefs

We consider an equation with real coefficients of the type

$$
ax^2 + bx + c = 0, (a, b, c, z) \in \mathbb{R}^* \times \mathbb{R}^2 \times \mathbb{C}
$$

If the discriminant Δ is negative then this equation admits 2 complex solutions

$$
z_1 = \frac{-b - i\sqrt{|\Delta|}}{2a}
$$

$$
z_2 = \frac{-b + i\sqrt{|\Delta|}}{2a}
$$

Example 25. Solve in $\mathbb C$ the equation $x^2 + x + 1 = 0$

5.2 Exercises

Exercise 1.

Find the rectangular form of those complex numbers :

1. $(2+3i)(5-i)$; $(-1+2i)(3i+5)$

2.
$$
(1+2i)^2
$$
; $(2-i)^2$

3.
$$
\frac{1+2i}{1+3i}; \frac{2i}{2-3i}
$$

- 4. z such that $\frac{1}{z}$ z = 1 R $+ iC\omega$
- 5. Give the conjugates of the results obtained in 1) et 2)

Exercise 2.

Write in function of
$$
\bar{z}
$$
 : $\left(\frac{2iz+3}{(5z+2i)(z+1)}\right)$

Exercise 3.

Find two complex numbers z and z' such that $|z + z'| < |z| + |z'|$, and two other complex numbers such that $|z+z'| = |z| + |z'|$

Exercise 4.

Solve in C the equation
$$
\frac{2+i}{2+z-i} = \frac{2+3i}{5-2i}
$$

Exercise 5.

Solve in $\mathbb C$ the equation $\frac{3+2iz}{2i}$ $2 + 3i$ = $-1 + 2i$ $i+3$

Exercise 6.

Let R, C, L and ω be three real positive numbers. In electricty, we define

1.
$$
\frac{1}{z} = \frac{1}{jL\omega} + \frac{1}{R}
$$

2.
$$
\frac{1}{z} = \frac{1}{jL\omega} + jC\omega
$$

Compute the rectangular form of the previous numbers.

Exercise 7.

Write the rectangular form of those complex numbers : $e^{i\frac{\pi}{3}}, e^{i\frac{\pi}{4}}, e^{i\frac{\pi}{2}}, e^{-i\frac{\pi}{3}}, e^{-i\frac{\pi}{4}}, e^{-i\frac{\pi}{2}}, e^{-i\pi}$

Exercise 8.

Write the exponential form of those complex numbers : $i, -i, 1+i, 1-i, \frac{1}{i}$ i , $1+i$ $1-i$, $\sqrt{3} + i, \sqrt{3}$ $i, -e^{i\theta},$ $\cos \theta - i \sin \theta$, $\sin \theta - i \cos \theta$

Exercise 9.

Let R, C, L and ω be real positive numbers. In electricty, we define

1.
$$
\frac{1}{z} = \frac{1}{jL\omega} + \frac{1}{R}
$$

2.
$$
\frac{1}{z} = \frac{1}{jL\omega} + jC\omega
$$

Compute the polar form of the previous numbers.

Exercise 10. Calculate $z = (1 + \sqrt{3}i)^{13}$ et (√ $\sqrt{3} - i$ ^(our year)

Exercise 11.

Let's put $z_1 = 1 + i$, $z_2 = 1 + i$ √ 3 and $z_3 = z_1 z_2$.

1. Find the argument and the modulus of z_1, z_2, z_3 .

2. Let's deduce the exact values of cos 7π 12 and sin 7π 12 .

Exercise 12.

Exercise 12.
Let's define $z_1 = 2\sqrt{6}\left(1+i\right)$ and $z_2 =$ √ $\overline{2}\left(1+i\right)$ √ $\overline{3}$

1. Compute the complex number $\frac{z_1}{z_1}$ z_2 , use its rectangular form.

2. Calculate the argument and the modulus of z_1, z_2 , \overline{z}_1 z_2

3. Let's deduce
$$
\cos \frac{\pi}{12}
$$
 and $\sin \frac{\pi}{12}$.

Exercise 13.

Let's define $z = e^{i\phi} + e^{i\psi}$. Prove that $z = e^{i\frac{\phi + \psi}{2}} [e^{i\frac{\phi - \psi}{2}} + e^{i\frac{\psi - \phi}{2}}]$ and calculate |z|.

Exercise 14.

Linearize and find antiderivatives for those functions :

- 1. $\cos^5 x$
- 2. $\cos^2 x \sin^3 x$

Exercise 15. Find square roots of $1 + i$, $-i$, √ $3 - i$.

Exercise 16. Find the third roots of $2 - 2i$.

Exercise 17.

Solve in C, the equation : $z^4 = \frac{1-i}{z+i}$ $1+i$ $\frac{v}{\sqrt{2}}$ 3

Exercise 18.

For all $z \in \mathbb{C}$ we put $P(z) = z^4 - 1$

- 1. Factorize $P(z)$
- 2. Let's deduce solutions of this equation $P(z) = 0$
- 3. Let's deduce solutions of this equation $\left(\frac{2z+1}{1}\right)$ $z - 1$ \setminus^4 $= 1$

.

Exercise 19.

Find the fourth order roots of 81 and -81.

Exercise 20. Solve in $\mathbb C$ the equation $x^2 + 2x + 5 = 0$

Exercise 21. (optional) Let $n \in \mathbb{N}^*$,

- 1. Solve $z^{2n} + z^n + 1 = 0$.
- 2. Solve $(z-1)^n = (z+1)^n$, and prove that the solutions are purely imaginary numbers.