Integration and anti-derivatives

Calculus deals principally with two geometric problems :

- (i) The problem of finding SLOPE of the tangent line to the curve, is studied by the limiting process known as differentiation and
- (ii) Problem of finding the AREA of a region under a curve is studied by another limiting process called Integration.
Actually integral calculus was developed into two different directions over a long period independently.
- (i) Leibnitz and his school of thought approached it as the anti derivative of a differentiable function.
- (ii) Archimedes, Eudoxus and others developed it as a numerical value equal to the area under the curve of a function for some interval.
However as far back as the end of the 17th century it became clear that a general method for solution of finding the area under the given curve could be developed in connection with definite problems of integral calculus.

1 Riemann Integral

1.1 Introduction

Eudoxus (400-355 BC approximately) first computed areas and volumes using stacking plates whose thickness tends to 0 ; Archimedes ($287-219 \mathrm{BC}$) perfects Eudoxe method (which is mentioned in Euclid's Elements).
At the end of the Middle Ages, (1560-1660) , Cavalieri , Galileo and Pascal enhance the area and volume calculations by stacking small rectangles or parallelepipeds, but not rigorously. However, they get very good approximations.
Newton (1643-1729) and Leibniz (1646-1716), with the infinitesimal calculus, succeed in proving the relationship between the anti-derivatives of a function and calculus area.(The notation \int is due to Leibniz).
Cauchy (1789-1857), defines rigorously the concept of limit, and thus gives a rigorous definition of the integral with the continuous functions and Riemann (1826-1866) defines the integral for continuous piecewise .
Lebesgue (1875-1941) extends the concept to classes of more general functions as piecewise continuous functions .

1.2 Darboux Sums(1842-1917)

Definition 1. Upper bound, supremum and maximum point.
Let f be a bounded function on $[a, b]$.

- An upper bound of f on $[a, b]$ is a real number M such that for all x of $[a, b], f(x) \leqslant M$.
- The supremum of f on $[a, b]$ is the least upper bound, it is is less than any other upper bound. We denote it by $\sup _{x \in[a ; b]} f(x)$
- A maximum point of f on $[a, b]$, is a real number M such that for all x of $[a, b], f(x) \leqslant M$ and there exists $x_{0} \in[a, b]$ such that $M=f\left(x_{0}\right)$. We denote $\max _{x \in[a ; b]} f(x)$

Example 1.

True or False?

1. An upper bound is a maximum point.
2. A maximum point is an upper bound.
3. A bounded function has always a maximum point on $[a, b]$.
4. A bounded function has always a supremum on $[a, b]$.

We define also a lower bound, an infimum and a minimum point.

A partition of an interval $[a, b]$ is a finite sequence of values x_{i} such that
$\left\{x_{0}=a<x_{1}<\ldots<x_{n}=b\right\}$
Each interval $\left[x_{i-1}, x_{i}\right]$ is called a subinterval of the partition. Let f a bounded function on $[a ; b]$ and $\sigma=\left\{x_{0}=a<x_{1}<\ldots<x_{n}=b\right\}$. be a partition of [a,b].

We set for all $i \in\{1 ; 2 ; \ldots n\}$:
$m_{i}=\inf _{x \in\left[x_{i-1} ; x_{i}\right]} f(x), M_{i}=\sup _{x \in\left[x_{i-1} ; x_{i}\right]} f(x)$ and $\delta(\sigma)=\max _{i \in\{1,2, \ldots, n\}} x_{i}-x_{i-1}$.

Definition 2.

The lower Darboux sum of f with respect to σ is :

$$
s_{[a ; b]}(f, \sigma)=\sum_{i=1}^{i=n} m_{i}\left(x_{i}-x_{i-1}\right)
$$

The upper Darboux sum of f with respect to σ is :

$$
S_{[a ; b]}(f, \sigma)=\sum_{i=1}^{i=n} M_{i}\left(x_{i}-x_{i-1}\right)
$$

Example 2.

Let's consider the function with the following graph :

Let's consider the partition $\sigma: x_{0}=a=0, x_{1}=1,5, x_{2}=2, x_{3}=4$ and $x_{4}=5=b$.

1. Justify that $\sup _{x \in\left[x_{0} ; x_{1}\right]} f(x)$ is not a maximum point.
2. Compute Darboux sums.
3. Represent surfaces such that Darboux sums are their areas.

4. Let's consider now the partition $\sigma^{\prime}: x_{0}^{\prime}=a=0, x_{1}^{\prime}=1,5, x_{2}^{\prime}=2, x_{3}^{\prime}=3,5, x_{4}^{\prime}=4$ and $x_{5}^{\prime}=5=b$.
(a) Check on the graph that:

$$
s_{[a ; b]}(f, \sigma)<s_{[a ; b]}\left(f, \sigma^{\prime}\right)<\text { area below the curve }<S_{[a ; b]}\left(f, \sigma^{\prime}\right)<S_{[a ; b]}(f, \sigma)
$$

(b) What can you predict on $s_{[a ; b]}(f, \sigma)$ and on $S_{[a ; b]}(f, \sigma)$ if $\delta(\sigma)$ tends to 0 ?

1.3 Riemann Integral

Definition 3.

A function f is said Riemann integrable on $[a, b]$ if

$$
\lim _{\delta(\sigma) \rightarrow 0} S(f, \sigma)-s(f, \sigma)=0
$$

The Riemann integral is denoted : $\int_{a}^{b} f(x) d x=\lim _{\delta(\sigma) \rightarrow 0} S(f, \sigma)=\lim _{\delta(\sigma) \rightarrow 0} s(f, \sigma)$.

Example 3.

Prove that the function f defined on $[0,1]$ by $f(x)=1$ if $x \in \mathbb{Q}$ and 0 if not, is not Riemann integrable. (This function is Lebesgue integrable).

Remark 1.

- \int is read sum as it deals with the limit of Σ.
- In $f(x) d x, f(x)$ matches M_{i} and $m_{i}, d x$ matches $x_{i}-x_{i-1}$ as $\delta(\sigma)$ tends to 0 .
- If σ is a regular subdivision, and f is Riemann integrable on $[a, b]$, we get:
$\int_{a}^{b} f(x) d x=\lim _{n \rightarrow+\infty} \sum_{k=1}^{n} f\left(a+k \frac{b-a}{n}\right) \frac{b-a}{n}$.

Property 1.

The following functions are Riemann integrable :

- piecewise continuous functions.
- monotonic functions.

1.4 Fundamental properties

Let f and g be two Riemann integrable functions on an interval $[a ; b]$ and λ be a real number.

1.4.1 Linearity

$\int_{a}^{b}(f+g)=\int_{a}^{b} f+\int_{a}^{b} g$
$\int_{a}^{b} \lambda f=\lambda \int_{a}^{b} f$

Example 4.

Prove this property

1.4.2 Positivity

If $f \geqslant 0$ on the interval $[a ; b]$ then $\int_{a}^{b} f \geqslant 0$

1.4.3 Monotonicity

If $g \geqslant f$ on $[a ; b]$ then $: \int_{a}^{b} g \geqslant \int_{a}^{b} f$.

Example 5.

Prove this property

1.4.4 Increase in absolute value

$\left|\int_{a}^{b} f\right| \leqslant \int_{a}^{b}|f|$

1.4.5 Mean Inequality

$\left|\int_{a}^{b} f g\right| \leqslant \sup |f| \times \int_{a}^{b}|g|$
In particular, (taking $\mathrm{g}=1$) : $\left|\int_{a}^{b} f\right| \leqslant \sup |f| \times(b-a)$

1.4.6 Mean value of a function

The mean value of f on the interval $[a ; b]$ is : $M=\frac{1}{b-a} \int_{a}^{b} f$

1.4.7 The addition property

$\forall c \in[a ; b], \int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f$

1.4.8 Cauchy-Schwarz Inequality

$\left(\int_{a}^{b} f g\right)^{2} \leqslant \int_{a}^{b} f^{2} \times \int_{a}^{b} g^{2}$

Proofs :

INSTTTUT NATIONAL
INSTIUT NAIO
DES SLIENCES
APPIOUEES
CENTRE VAL DE LOIRE

2 Antiderivatives

2.1 Definition and properties

Definition 4.

Let's consider $f: I \rightarrow \mathbb{R}$ and I a real interval. $F: I \rightarrow \mathbb{R}$ is an antiderivative of f on I if and only if F is differentiable on I and $F^{\prime}=f$.

Proposition 1.

Let's consider $f, F, G: I \rightarrow \mathbb{R}$ such that F is an antideriavtive of f on I, then $G-F=K$ with K a real constant. Thus antideriavtives of a function only differ from a constant.

2.2 Antiderivatives of usual functions

Let u be a function defined on the subset I of \mathbb{R}.

$$
\begin{array}{ccc}
f(x) & F(x) & \text { For } u(x) \in \ldots \\
u^{\prime} u^{\alpha}, \alpha \neq-1 & \frac{u^{\alpha+1}}{\alpha+1} & \mathbb{R} \text { if } \alpha \in \mathbb{N}, \mathbb{R}_{+}^{*} \text { if } \alpha \in \mathbb{R}-\mathbb{N} \\
\frac{u^{\prime}}{u} & \ln |u| & \mathbb{R}_{+}^{*} \text { or } \mathbb{R}_{-}^{*} \\
u^{\prime} \cos u & \sin u & \mathbb{R} \\
u^{\prime} \sin u & -\cos u & \mathbb{R} \\
u^{\prime} \tan u & -\ln |\cos u| &]-\frac{\pi}{2} ; \frac{\pi}{2}[\\
u^{\prime} e^{u} & e^{u} & \mathbb{R} \\
u^{\prime} \operatorname{ch} u & \operatorname{sh} u & \mathbb{R} \\
u^{\prime} \operatorname{sh} u & \operatorname{ch} u & \mathbb{R} \\
u^{\prime} \operatorname{th} x & \ln (\operatorname{ch} u) & \mathbb{R} \\
\frac{u^{\prime}}{1+u^{2}} & \operatorname{Arctan} u & \mathbb{R} \\
\frac{u^{\prime}}{1-u^{2}} & \operatorname{Argth} u &]-1 ; 1[\\
\frac{u^{\prime}}{\sqrt{1-u^{2}}} & \operatorname{Arcsin} u & \mathbb{R} \\
\frac{u^{\prime}}{\sqrt{1+u^{2}}} & \operatorname{Argsh} u &] 1 ;+\infty[\\
\frac{u^{\prime}}{\sqrt{u^{2}-1}} & \operatorname{Argch} u &]-\frac{\pi}{2} ; \frac{\pi}{2}[\\
\frac{u^{\prime}}{\cos ^{2}(u)} & \tan u & \mathbb{R} \\
\frac{u^{\prime}}{\operatorname{ch}^{2} u} & \operatorname{th} u &
\end{array}
$$

Example 6.

Compute those antiderivatives :

1. $f_{1}(x)=2 x e^{x^{2}}$
2. $f_{2}(x)=\frac{\sin (x)}{x}$

CENTRE VAL DE LOIRE
3. $f_{3}(x)=\frac{2 x}{x^{2}+1}$
4. $f_{4}(x)=\frac{2}{4 x^{2}+1}$
5. $f_{5}(x)=\frac{1}{x} \ln (x)$

2.3 Fundamental theorem of differential calculus

Let f be a continuous function on a real interval I and $a \in I$. The function $F: x \rightarrow \int_{a}^{x} f(t) d t$ is the unique antiderivative of f which vanishes at a.
Thus we get :

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)=[F(x)]_{a}^{b}
$$

Example 7. Compute $\int_{1}^{2}(x+1) d x$.

Remark 2.

Let f be a continuous function on the interval I, the not $\int f(x) d x$ refers to any antiderivative of f. Thus, for instance, we get : $\int x^{2} d x=\frac{1}{3} x^{3}+C$

Example 8.

1. Let f be a continuous function on I, let's define for $a \in I F(x)=\int_{a}^{x} f(t) d t$. Compute F^{\prime}.
2. We assume that f is differentiable on I, let's compute $\int_{a}^{b} f^{\prime}(t) d t$

Remark 3. Optional

If f is not a continuous function, the previous theorem is false :

- f could have antiderivatives even though f is non integrable.

Example :
Let's consider the function F defined on $[0 ; 1]$ by $F(x)=x^{2} \sin \left(\frac{1}{x^{2}}\right)$ sur $\left.] 0 ; 1\right]$ et $F(0)=0$.
W show that F is differentiable on $[0 ; 1]$ and $F^{\prime}(x)=2 x \sin \left(\frac{1}{x^{2}}\right)-\frac{2}{x} \cos \left(\frac{1}{x^{2}}\right)$ sur $\left.] 0 ; 1\right]$ and $F^{\prime}(0)=0$.
Let h be the function defined by $h(x)=2 x \sin \left(\frac{1}{x^{2}}\right)$ on $\left.] 0 ; 1\right]$ with $h(0)=0$, let g be $g(x)=-\frac{2}{x} \cos \left(\frac{1}{x^{2}}\right)$ on $\left.] 0 ; 1\right]$ with $g(0)=0$.
h is a continuous function on $[0 ; 1]$ and so admits an antiderivative H on $[0 ; 1]$.
Finally we get $g=F^{\prime}-h=F^{\prime}-H^{\prime}=(F-H)^{\prime}$, so g admits $F-H$ as antiderivative.
But g is not integrable on $[0 ; 1]$, as g is not bounded at 0 .

- A piecewise function is integrable but has no antiderivative.

3 Change of variable and integration by parts

3.1 Integration by parts

Let $u, v:[a ; b] \rightarrow \mathbb{R}$ be of differentiability class \mathcal{C}^{∞} on $[a ; b]$. We get :

$$
\int_{a}^{b} u v^{\prime}=[u v]_{a}^{b}-\int_{a}^{b} u^{\prime} v
$$

Example 9.
Calcuate $\int_{0}^{1} x \sin (2 x) d x$

3.2 Change of variable

3.2.1 General Case

Let $f: I \rightarrow \mathbb{R}$, be a continuous function on the interval I and $\phi:[a ; b] \rightarrow I$, of differentiability class \mathcal{C}^{1} on $[a ; b]$. We get :

$$
\int_{a}^{b} f(\phi(t)) \phi^{\prime}(t) d t=\int_{\phi(a)}^{\phi(b)} f(x) d x
$$

In practise, we may use this formula from the left to the to the right, otr from the right to the left, to calulate an antiderivative :
From the left to the right

- We set $x=\phi(t)$, and replace $\phi(t)$ by x.
- We calculate $d x=\phi^{\prime}(t) d t$, and replace $\phi^{\prime}(t) d t$ by $d x$.
- We change the limits of the integral : t varies from a a to b thus x varies from $\phi(a)$ à $\phi(b)$.

Example 10.

Calculate : $\int_{0}^{\frac{\pi}{4}} \frac{d t}{\cos t}$ setting $x=\sin t$
Compute $\int_{4}^{9} \frac{\sqrt{t}}{1+t}$ by setting $x=\sqrt{t}$, then give antiderivatives for $f(x)=\frac{\sqrt{t}}{1+t}$.
From the right to the left

- We set $x=\phi(t)$, and replace x by $\phi(t)$.
- We calculate $d x=\phi^{\prime}(t) d t$, and replace $d x$ by $\phi^{\prime}(t) d t$.
- We change the limits of the integral : x varies from $\phi(a)$ to $\phi(b)$ thus t varies from a to b.

Example 11.

Calculate : $\int_{0}^{1} \sqrt{1-x^{2}} d x$ setting $x=\cos t$ and give an antiderivative for $f(x)=\sqrt{1-x^{2}}$

To calculate an antiderivative

We ignore the limits of the integral.

- From the left to the right : we replace x by $\phi(t)$.
- From the right to the left : ϕ requires to be a bijection from I to $f(I)$, thus we replace t by $\phi^{-1}(x)$.

Example 12.

Calculate antiderivatives in examples 10 et 11.

CENTRE VAL DE LOIRE

3.2.2 Bioche's rules

Let f be a function defined by $f(t)=\frac{P(\cos (t), \sin (t))}{Q(\cos (t), \sin (t)))}$ where P and Q are two polynomials functions of two variables, with real coefficients.
In order to calculate $\int f(t) d t$, we define $\omega(t)=f(t) d t$.
We will use the change of variable :

- $u=\cos (t)$, if $\omega(-t)=\omega(t)$.
- $u=\sin (t)$, if $\omega(\pi-t)=\omega(t)$.
- $u=\tan (t)$, if $\omega(\pi+t)=\omega(t)$.
- $u=\tan (t / 2)$ for all others cases.

Setting $u=\tan \frac{t}{2}$, we get $: \cos t=\frac{1-u^{2}}{1+u^{2}} ; \sin t=\frac{2 u}{1+u^{2}}$ et $\tan t=\frac{2 u}{1-u^{2}}$.
Example 13. Find the good change of variables for those integrals :

1. $\int \frac{\cos ^{2}(t) \sin (t)}{1+\cos (t)} d t$
2. $\int \frac{\cos (t)}{1+\sin (t)} d t$
3. $\int \frac{\cos (t)}{\sin (t)\left(1+\cos ^{2}(t)\right)} d t$
4. $\int \frac{\sin (t)}{1+\sin (t)} d t$

4 To calculate antiderivatives

To calculate an antiderivative of f, we may use one of the following method :

1. use the inverse of derivatives formula : f is of the form $\frac{u^{\prime}}{u}, u^{\prime} u^{n}$, etc
2. Integration by parts

- Classical examples : $f(x)=P(x) e^{a x}, f(x)=P(x) \sin (a x)$ and $f(x)=P(x) \operatorname{Ln}(Q(x))$ with P and Q two polynomial functions.
- If I is an antiderivative, then I is solution of a differential equation.

3. Case where $f(x)=\sin ^{n} x \cos ^{p} x$

- If n and p are even, then we linearize f.
- If n or p is odd, we write f as a sum $u^{\prime} u^{k}$ with $u=\cos$ or $u=\sin$.

4. Antiderivative of a rational function.

- We use partial fraction decomposition for f.

5. Change of variables

- General Case
- Bioche's rules
- Antiderivative of $f(\sqrt{a x+b})$ with f a rational function.

CENTRE VAL DE LOIRE

5 Application of integral calculus

5.1 Area calculus

Property 2.

Let f be a continuous function on $[a, b]$.

- If f is positive on $[a, b]$ then $\int_{a}^{b} f(x) d x$ is the area of the region bounded by the graph of f, the x-axis and the vertical lines $x=a$ and $x=b$.
- If f is negative on $[a, b]$ then $-\int_{a}^{b} f(x) d x$ is the area of the region bounded by the graph of f, the x-axis and the vertical lines $x=a$ and $x=b$.
- If f is of any sign, $\int_{a}^{b} f(x) d x=\sum$ areas of regions above the x axis $-\sum$ areas of regions below the x

Example 14.
Calculate $\int_{0}^{3} x-2 d x$ and give a geometrical interpretation of this integral.

5.2 Center of gravity of a homogeneous plate

Let S be an homogenenous plate with constant thickness and uniform density. The center of gravity is computed tha,ks to a double integral, but in a the particular case where the surface is bounded by the graph of a function f, the x-axis and the lines of equations $x=a$ and $x=b$, we get the point with coordinates:
$x_{G}=\frac{1}{A} \int_{a}^{b} x f(x) d x$ et $y_{G}=\frac{1}{2 A} \int_{a}^{b}(f(x))^{2} d x$ with A the area of the surface.

Example 15.

Calculate the center of inerty of the surface bounded by $y=2 \sqrt{x}$, the x-axis and the line $x=h$.

6 Exercises

Exercise 1.

1. Let's put, for all real number $x, I(x)=\int_{0}^{x} t d t$.
(a) I is an integral? an antiderivative?
(b) Draw it and with an area calculus, find its expression in function of x.
(c) Check your result by computing an antiderivative,
(d) by using the formula given in the first remark.
2. Evaluate the following limits using Darboux sums :

$$
\begin{aligned}
& u_{n}=\sum_{k=1}^{n} \frac{n+k}{n^{2}+k^{2}} \\
& v_{n}=\sum_{k=1}^{n} \frac{k}{n^{2}} \sin \left(\frac{k \pi}{n}\right)
\end{aligned}
$$

CENTRE VAL DE LOIRE

$$
w_{n}=\frac{1}{n} \sqrt[n]{\prod_{k=1}^{n}(n+k)}
$$

(You could change the product in sum...)

Exercise 2.

Compute the following antiderivatives :

1. $\int \frac{d x}{(2 x+1)^{3}}$
2. $\int \frac{d t}{(1-t)^{2}}$
3. $\int \frac{d u}{\sqrt{1+u}}$
4. $\int \sqrt{1-x} d x$
5. $\int \frac{x^{2}+1}{\sqrt{x}} d x$
6. $\int \frac{(1-t)^{2}}{t \sqrt{t}} d t$
7. $\int \frac{z}{\sqrt{z^{2}-1}} d z$
8. $\int \frac{t}{1+t^{2}} d t$
9. $\int \frac{t+1}{t^{2}+4} d t$
10. $\int \frac{x}{\left(1+x^{2}\right)^{2}} d x$
11. $\int \frac{e^{x}}{\operatorname{ch} x} d x$
12. $\int \frac{x+1}{\sqrt{1-x^{2}}} d x$
13. $\int \frac{\sqrt{x}-x^{3} e^{2 x}+x^{2}}{x^{3}} d x$

Exercise 3.

1. Determine the average value over a period of a purely sinusoidal signal $u(t)=u_{0} \cos \left(\omega t+\varphi_{0}\right)$
2. Determine the mean value over a period of a triangular wave of period T : For $-\frac{T}{2} \leqslant t \leqslant 0, s(t)=-a\left(\frac{4 t}{T}+1\right)$ and for $0 \leqslant t \leqslant \frac{T}{2}, s(t)=a\left(\frac{4 t}{T}-1\right)$
3. The effective value $u(t)$ is defined as the square root of the average on a period of $u^{2}(t)$. The effective value is said to be the quadratic average of u. Let's determine $u_{\text {eff }}$ and $s_{\text {eff }}$ for the previous signals (1 and 2).

Exercise 4.

Calculate those antiderivatives using an integration by parts

1. $\int x \ln (1+x) d x$
2. $\int \operatorname{Arctan}(2 x) d x$
3. $\int x \operatorname{Arctan} x d x$
4. $\int \operatorname{Arcsin} x d x$
5. $\int \theta \sin 2 \theta d \theta$
6. $\int x^{2} e^{-x} d x$
7. $\int \frac{\alpha}{\cos ^{2} \alpha} d \alpha$
8. $\int x^{3} \operatorname{Arctan} x d x$

Exercise 5:

Compute $\int \sqrt{x^{2}+1} d x$ using an integration by parts.
Exercise 6. Compute this antiderivative(using a double integration by parts) :

$$
I(x)=\int_{0}^{x} \cos (2 t) e^{t} d t
$$

Exercise 7.

Calulate using linearization :

1. $\int \cos ^{2} x d x$
2. $\int \operatorname{sh}^{2} t d t$
3. $\int \cos ^{2} x \sin 2 x d x$

Exercise 8.

Calulate without linearization:

1. $\int \cos ^{5} x d x$
2. $\int \operatorname{sh}^{3} t d t$
3. $\int \cos ^{2} x \sin 2 x d x$

Exercise 9.

Calculate those integrals (using the given change of variables) :

1. $\int \frac{x^{3}}{\sqrt{x+1}} d x \quad(t=\sqrt{x+1}) \quad 2 . \int \frac{1+\sqrt{\frac{1+x}{x}}}{x} d x\left(u=\sqrt{\frac{1+x}{x}}\right) \quad 3 . \int \sqrt{a^{2}-x^{2}} d x \quad(x=a \sin t)$
2. $\int \frac{\operatorname{sh}^{3} x}{\operatorname{ch}^{5} x} d x \quad(y=\operatorname{ch} x) \quad 5 . \int \frac{d x}{\sqrt{x}+\sqrt[3]{x}}(u=\sqrt[6]{x})$

Exercise 10.

Compute, using Bioche's rules :

1. $\int \tan ^{4} \theta d \theta$
2. $\int \frac{1-\cos x}{1+\cos x} d x$
3. $F(x)=\int \frac{1}{1+\tan x} d x$
4. $F(t)=\int \frac{1}{\sin t} d t$

Exercise 11.

Let's consider an homogeneous plate made by the set of points $\mathrm{M}(\mathrm{x} ; \mathrm{y})$ whose coordinates check : $0 \leqslant x \leqslant 2$ et $0 \leqslant y \leqslant \frac{x}{x+1}$. Donner les coordonnées du centre de gravité de la plaque.

Exercise 12.

A horizontal cylindrical vessel of length 1 and whose base radius is R , contains a liquid on a height h . Show that the volume V of the liquid is : $V=2 l \int_{0}^{h} \sqrt{R^{2}-(x-R)^{2}} d x$
Calculate it using this change of variables : $x-R=R \sin \theta$

