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Integration and anti-derivatives

Calculus deals principally with two geometric problems :
e (i) The problem of finding SLOPE of the tangent line to the curve, is studied by the limiting
process known as differentiation and
e (ii) Problem of finding the AREA of a region under a curve is studied by another limiting
process called Integration.
Actually integral calculus was developed into two different directions over a long period inde-
pendently.
e (i) Leibnitz and his school of thought approached it as the anti derivative of a differentiable
function.
e (ii) Archimedes, Eudoxus and others developed it as a numerical value equal to the area
under the curve of a function for some interval.
However as far back as the end of the 17th century it became clear that a general method
for solution of finding the area under the given curve could be developed in connection with
definite problems of integral calculus.

1 Riemann Integral

1.1 Introduction

Eudoxus ( 400-355 BC approximately ) first computed areas and volumes using stacking plates
whose thickness tends to 0; Archimedes ( 287-219 BC) perfects Eudoxe method ( which is
mentioned in Euclid’s Elements).

At the end of the Middle Ages , (1560-1660) , Cavalieri , Galileo and Pascal enhance the area
and volume calculations by stacking small rectangles or parallelepipeds , but not rigorously.
However, they get very good approximations.

Newton (1643-1729) and Leibniz (1646-1716) , with the infinitesimal calculus , succeed in
proving the relationship between the anti-derivatives of a function and calculus area.( The

notation / is due to Leibniz).

Cauchy (1789-1857) , defines rigorously the concept of limit , and thus gives a rigorous definition
of the integral with the continuous functions and Riemann (1826-1866) defines the integral for
continuous piecewise .

Lebesgue (1875-1941) extends the concept to classes of more general functions as piecewise

continuous functions .
Leibniz 1646-1716

Eudoxe 400-355 Newton 1643-1729 Lebesgue 1875-1941
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1.2 Darboux Sums(1842-1917)

Definition 1. Upper bound, supremum and maximum point.

Let f be a bounded function on |a, b].
e An upper bound of f on [a,b] is a real number M such that for all z of [a,b], f(x) < M.
e The supremum of f on [a,b] is the least upper bound, it is is less than any other upper

bound. We denote it by sup f(z)
x€asb]
e A maximum point of f on [a,b], is a real number M such that for all z of [a,b], f(x) < M

and there exists x¢ € [a, b] such that M = f(zq). We denote m[a:zb:} f(z)
z€[a;

Example 1.
True or False?

1. An upper bound is a maximum point.
2. A maximum point is an upper bound.
3. A bounded function has always a maximum point on |[a, b].

4. A bounded function has always a supremum on [a, b].

We define also a lower bound, an infimum and a minimum point.

A partition of an interval [a, ] is a finite sequence of values z; such that
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{rp=a<mz <..<z,=0}
Each interval [x;_;, ;] is called a subinterval of the partition. Let f a bounded function on [a; b]
and 0 = {zg =a < x; < ... <z, = b}. be a partition of [a,b].

We set for all i € {1;2;...n} :
m; = inf f(x), M;= sup f(x)and §(c)= max z; —x; 1.

r€lri—1;%) T€[Ti—1;25] 1€{1,2,....,n}

Definition 2.
The lower Darboux sum of f with respect to o is :

S[ab] E mz Ti— Tj— 1

The upper Darboux sum of f with respect to o is :

S (f,0) = ZM — 1)

Example 2
Let’s consider the function with the following graph :

1T

~

0 1 2 3 4 5 6

Let’s consider the partition o : xo =a =0, x1 =1,5, xo =2, xz3 =4 and x4, =5 = b.

1. Justify that sup f(z) is not a maximum point.
z€[xo;z1]

2. Compute Darboux sums.

3. Represent surfaces such that Darboux sums are their areas.
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4. Let’s consider now the partition ¢’ : 25 = a =0, 2] = 1,5, 25 = 2, 25 = 3,5, 2, = 4 and
zg =5=0.
(a) Check on the graph that :

Stasp) (f, 0) < Spau)(f, 0') < area below the curve < Sy (f,0") < Sa(f, 0)

IS

~

0 1 2 3 4 5 6

(b) What can you predict on si(f, o) and on Sy (f,0) if 6(c) tends to 07

1.3 Riemann Integral

Definition 3.
A function f is said Riemann integrable on [a, ] if

lim S(f,0)—s(f,o)=0.

0(0)—0
b
The Riemann integral is denoted : / f(x)dx = lim S(f,0)= lim s(f, o).
a 8(o0)—0 6(0)—0
Example 3.

Prove that the function f defined on [0,1] by f(z) = 1 if z € Q and 0 if not, is not Riemann
integrable. (This function is Lebesgue integrable).

Remark 1.
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° / is read sum as it deals with the limit of X.

e In f(z)dz, f(x) matches M; and m;, de matches x; — x;_; as 6(o) tends to 0.
e If 0 is a regular subdivision, and f is Riemann integrable on [a, b], we get :

b - b—a b—a
der = li k .
| #ayis Jm 3% flo k)

Property 1.

The following functions are Riemann integrable :
e piecewise continuous functions.
e monotonic functions.

1.4 Fundamental properties

Let f and g be two Riemann integrable functions on an interval [a;b] and A be a real number.

1.4.1 Linearity

/ab<f+g)=/abf+/abg
[au=]

Example 4.
Prove this property
1.4.2 Positivity

b
If f > 0 on the interval [a;b] then / f=0

1.4.3 Monotonicity

b b
If g> fon [a;b]then:/ g}/ f.
Example 5.

Prove this property
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1.4.4 Increase in absolute value
b b
/ f‘ <[

1.4.5 Mean Inequality

b b
/fg\gsupmx/ ]

In particular, (taking g=1) :

b
/f‘ésuplfIX(b—a)

1.4.6 Mean value of a function

1 b
The mean value of f on the interval [a;b] is : M = — a/ f

1.4.7 The addition property

Ve € [a; b, /abf:/acf+/cbf

1.4.8 Cauchy-Schwarz Inequality

(/abfg)2</abf2></ab92
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Proofs :
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2 Antiderivatives

2.1 Definition and properties

Definition 4.
Let’s consider f : I — R and [ a real interval. F' : I — R is an antiderivative of f on [ if and
only if F' is differentiable on I and F' = f.

Proposition 1.
Let’s consider f, F,G : I — R such that F'is an antideriavtive of f on I, then G — F = K with
K a real constant. Thus antideriavtives of a function only differ from a constant.

2.2 Antiderivatives of usual functions

Let u be a function defined on the subset I of R.

f(z) F(z) Foru(z) € ...
a+1
v a4 -1 2 R ifo € NR® ifa € R— N
, a+1
v In |ul R’ orR*
U
u' cosu sinu R
' sinu —Ccosu R
v tanu —1In | cos u| ]—Z;Z[
2 2
u'et e R
u' chu shu R
u' shu chu R
u' tha In(chu) R
/
Y Arctanu R
1 +/u2
u
T Argthu | —1;1]
v Aresi |- 1;1]
_ resin u —1;
V 1 —/ U2
u
—_— Argshu R
V1 —i/—uQ &
u
_ Argchu 1; 400
u ; ] T 77[
_ an - ==
cos?(u) 272
!
u2 thu R
ch”u

Example 6.

Compute those antiderivatives :
1. fi(z) = 2ze®

2 fol) = sin(x)
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2x
3 folz) = 2241
2
4o fale) = e

5. fala) = In(a)

2.3 Fundamental theorem of differential calculus

Let f be a continuous function on a real interval I and a € I.The function F' : x — / f(t)dt

is the unique antiderivative of f which vanishes at a.
Thus we get :

b
/ f(x)dz = F(b) — F(a) = [F(2)]

Example 7. Compute / (x 4 1)dz.
1

Remark 2.

Let f be a continuous function on the interval I, the not / f(z)dx refers to any antiderivative
1
of f. Thus, for instance, we get : /w2d$ = §x3 +C

Example 8.

1. Let f be a continuous function on I, let’s define for a € I F(z) = / f(t)dt. Compute F'.

b
2. We assume that f is differentiable on I, let’s compute / f'(t)dt

bl

Remark 3. Optional

If f is not a continuous function, the previous theorem is false :
e f could have antiderivatives even though f is non integrable.
Example :
1
Let’s consider the function F defined on [0;1] by F(z) = 2” sin(—) sur |0;1] et F(0) = 0.
x

1 2 1
W show that F is differentiable on [0;1] and F'(z) = 2z sin(—;) — — cos(—;) sur |0;1] and
T T T

F'(0) = 0.
1
Let h be the function defined by h(z) = 2z sin(;) on [0;1] with A(0) = 0, let g be

g(x) = —%cos(%) on |0;1] with ¢(0) = 0.

h is a continuous function on [0;1] and so admits an antiderivative H on [0; 1].
Finally we get g=F' —h=F — H = (F — H)', so g admits F' — H as antiderivative.
But g is not integrable on [0;1], as g is not bounded at 0.

e A piecewise function is integrable but has no antiderivative.

9
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3 Change of variable and integration by parts

3.1 Integration by parts
Let u,v : [a;b] — R be of differentiability class C* on [a;b]. We get :

b b
/ uv’ = [uv]® —/ u'v
a a

Example 9.
1
Calcuate/ x sin(2x)dx
0

3.2 Change of variable
3.2.1 General Case

Let f: I — R, be a continuous function on the interval I and ¢ : [a; b] — I, of differentiability
class C' on [a;b]. We get :
b p(b)
[ somewn= | s

In practise, we may use this formula from the left to the to the right, otr from the right to the
left, to calulate an antiderivative :
From the left to the right

e We set x = ¢(t), and replace ¢(t) by .

e We calculate dz = ¢'(t)dt, and replace ¢'(t)dt by dx.

e We change the limits of the integral : ¢ varies from a a to b thus = varies from ¢(a) a ¢(b).

Example 10.
Todt .

Calculate : —— setting x = sint

o cost

9

t t
Compute / i by setting z = V/#, then give antiderivatives for f(z) = L
L 1+t 1+t

From the right to the left
o We set x = ¢(t), and replace x by ¢(t).
e We calculate dz = ¢'(t)dt, and replace dx by ¢'(t)dt.
e We change the limits of the integral : x varies from ¢(a) to ¢(b) thus t varies from a to b.

Example 11.
1

Calculate : / V1 — 2?2 dx setting x = cost and give an antiderivative for f(x) =+v1 — 22
0

To calculate an antiderivative
We ignore the limits of the integral.
e From the left to the right : we replace = by ¢(t).
e From the right to the left : ¢ requires to be a bijection from I to f(I), thus we replace ¢

by ¢~ ().
Example 12.
Calculate antiderivatives in examples 10 et 11.

10
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3.2.2 Bioche’s rules
P(cos(t),sin(t))
Q(cos(t),sin(t)))

functions of two variables, with real coefficients.
In order to calculate /f(t)dt, we define w(t) = f(t)dt.

We will use the change of variable :
u = cos(t), if w(—t) = w(t).

Let f be a function defined by f(t) = where P and @ are two polynomials

o u =sin(t), if w(r —t) = w(t).
o u=tan(t), if w(r +1t) = w(t).
e u = tan(t/2) for all others cases.
, t ' 1= 2u 2w
Setting u :tan§ , we get : cost = 11 sint = T et tant = T — 2

Example 13. Find the good change of variables for those integrals :

L /msz(t)_sin(t)dt

T+ cos(d)
2. / %dt
5 / sin(t)(cloj—(tc)OSQ(t))dt
4 / %dt

4 To calculate antiderivatives

To calculate an antiderivative of f, we may use one of the following method :
/

1. use the inverse of derivatives formula : f is of the form —, v'u", etc
u

2. Integration by parts
e Classical examples : f(z) = P(x)e®, f(z) = P(x)sin(az) and f(x) = P(z)Ln(Q(x)) with
P and @ two polynomial functions.
e If [ is an antiderivative, then [ is solution of a differential equation.

3. Case where f(x) =sin" z cos’ x
e If n and p are even, then we linearize f.
e If n or pis odd, we write f as a sum u'u® with u = cos or u = sin.

4. Antiderivative of a rational function.
e We use partial fraction decomposition for f.

5. Change of variables
e General Case
e Bioche’s rules
e Antiderivative of f(vax + b) with f a rational function.

11
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5 Application of integral calculus

5.1 Area calculus

Property 2.

Let f be a continuous function on|a, b].
b

e If f is positive on [a, b] then / f(x)dx is the area of the region bounded by the graph of

f, the z-axis and the vertical lines = = a and z = b.
b

e If f is negative on [a, b] then —/ f(z)dz is the area of the region bounded by the graph

of f, the x-axis and the vertical fines © = a and x = b.

b
e If fisof any sign, / f(z)dz = Z areas of regions above the x axis—z areas of regions below the x

Example 14.
3

Calculate / x — 2dx and give a geometrical interpretation of this integral.
0

5.2 Center of gravity of a homogeneous plate

Let S be an homogenenous plate with constant thickness and uniform density. The center of
gravity is computed tha,ks to a double integral, but in a the particular case where the surface
is bounded by the graph of a function f, the x-axis and the lines of equations x = a and x = b,

we get the point with coordinates :
b

I 1
ro = Z/ zrf(x)dx et yg = oA (f(x))?dx with A the area of the surface.

Example 15.
Calculate the center of inerty of the surface bounded by y = 2v/z, the z-axis and the line z = h.

6 Exercises

Exercise 1.

1. Let’s put, for all real number z, I(z) = / tdt.
0

Check your result by computing an antiderivative,
by using the formula given in the first remark.

2. Evaluate the following limits using Darboux sums :

n-+k
un:Zn2+k2

k=1
~ k. km

U”:Zﬁsm(7>
k=1

12
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(You could change the product in sum...)

Exercise 2.
Compute the following antiderivatives :

dx e
1. — 4. V1—ad 7. 11. d
/(235—1—1)3 / e /\/ 1 /Chx v

8.
2 1 / 2
2./ di 5./33 e 1+1¢ 12 z+1

(1—1)? NG 0. t—l—l ' ,/1_3;2

du (1—1t) / VT — 13e*® + 22
6. [ ——=dt 10. —dx 13. / d
vV1i+u / t/t (1+$2) x3 v

Exercise 3.

1. Determine the average value over a period of a purely sinusoidal signal u(t) = ugcos(wt+yo)

2. Determine the mean value over a period of a triangular wave of period T :
T 4t T 4t
For —3 <t<0,s(t) = —a (T—i—l) and for 0 <t < E’S(t) :a(f—1>

3. The effective value u(t) is defined as the square root of the average on a period of u?(t).
The effective value is said to be the quadratic average of u. Let’s determine ¢ and s.¢y
for the previous signals (1 and 2).

Exercise 4.
Calculate those antiderivatives using an integration by parts
1. /a:ln(l +x)dr 3. /:BArctan:Bd:B 5. /Qsin29d9 7. / O; dov
cos? o
2. /Arctan (2z)dz 4. /Arcsin xdx 6. /x2e_$d:1: 8. /353 Arctan zdx

Exercise 5.
Compute /\/ 2% + 1dz using an integration by parts.

Exercise 6. Compute this antiderivative(using a double integration by parts) :

I(z) = /Ox cos(2t)e'dt

Exercise 7.
Calulate using linearization :

1./cos2xdx 2./sh2tdt 3./c032xsin2xdx

13
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Exercise 8.
Calulate without linearization :

1./Cos5$dw 2./sh3tdt 3./0082xsin2xdx

Exercise 9.
Calculate those integrals (using the given change of variables) :

x3 1+ e 1+
1./ _x+1dx <t: \/934—1) 2'/—3; dx(u = " ) 3./’/a2—x2d3: (z = asint)
sh® z dx
4. | ——d =ch 5 [ ————(u= ¢
/ch5x z (y=cha) /\/5—1—\3/5(” Vi)
Exercise 10.
Compute, using Bioche’s rules :
1— 1 1
1. /tan4 0do 2. /ﬂdm’ 3. Fla) = /—dx 4 F() = [ ——dt
1+ cosx 1+tanzx sint

Exercise 11.
Let’s consider an homogeneous plate made by the set of points M(x ;y) whose coordinates check :

x
0<z<2et 0Ky < L Donner les coordonnées du centre de gravité de la plaque.
x

Exercise 12.
A horizontal cylindrical vessel of length 1 and whose base radius is R, contains a liquid on a

h
height h. Show that the volume V of the liquid is : V = 2l/ \/R2 — (z — R)*dx

0
Calculate it using this change of variables : x — R = Rsinf

14



