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Integration and anti-derivatives

Calculus deals principally with two geometric problems :
� (i) The problem of �nding SLOPE of the tangent line to the curve, is studied by the limiting
process known as di�erentiation and

� (ii) Problem of �nding the AREA of a region under a curve is studied by another limiting
process called Integration.

Actually integral calculus was developed into two di�erent directions over a long period inde-
pendently.
� (i) Leibnitz and his school of thought approached it as the anti derivative of a di�erentiable
function.

� (ii) Archimedes, Eudoxus and others developed it as a numerical value equal to the area
under the curve of a function for some interval.

However as far back as the end of the 17th century it became clear that a general method
for solution of �nding the area under the given curve could be developed in connection with
de�nite problems of integral calculus.

1 Riemann Integral

1.1 Introduction

Eudoxus ( 400-355 BC approximately ) �rst computed areas and volumes using stacking plates
whose thickness tends to 0 ; Archimedes ( 287-219 BC) perfects Eudoxe method ( which is
mentioned in Euclid's Elements).
At the end of the Middle Ages , (1560-1660) , Cavalieri , Galileo and Pascal enhance the area
and volume calculations by stacking small rectangles or parallelepipeds , but not rigorously.
However, they get very good approximations.
Newton (1643-1729) and Leibniz (1646-1716) , with the in�nitesimal calculus , succeed in
proving the relationship between the anti-derivatives of a function and calculus area.( The

notation

∫
is due to Leibniz).

Cauchy (1789-1857) , de�nes rigorously the concept of limit , and thus gives a rigorous de�nition
of the integral with the continuous functions and Riemann (1826-1866) de�nes the integral for
continuous piecewise .
Lebesgue (1875-1941) extends the concept to classes of more general functions as piecewise
continuous functions .
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1.2 Approximation by rectangles

Here, we try to give an approximation of the area under the graph of a function f smooth
enough (for example continuous or piecewise continuous) on a segment [a, b].
A partition of an interval [a, b] is a �nite sequence of values xi such that
{x0 = a < x1 < ... < xn = b}
Each interval [xi−1, xi] is called a subinterval of the partition. Let f a bounded function on [a; b]
and σ = {x0 = a < x1 < ... < xn = b} be a partition of [a, b] . The length of the i-th part is
given by xi − xi−1, and we additionnally set δ(σ) = max

i∈{1,2,...,n}
xi − xi−1.

Example 1. The regular subdivision in n parts of [a, b] is the subdivision such that for all i,

xi − xi−1 =
b− a
n

, i.e. :

∀i ∈ {0, ..., n}, xi = a+ i
b− a
n

.

To compute the area of f on [a, b], we will approximate the area under its graph on each of
the subinterval [xi−1, xi] of the subdivision. There are many ways to do so (Darboux sums,
approximation by rectangles on the right/left, approximation by diamonds). Here, we will
introduce the approximation by rectangles on the right.

De�nition 1. Approximation by rectangles on the right.
The approximation of the area of f by rectangles on the subdivision σ is given by

S(f, σ) =
n∑
i=1

f(xi).(xi − xi−1).

Example 2. We set f(x) = 1 and g(x) = x for all x ∈ [0, 1].

1. Give the expression of the regular subdivision of [0, 1] with n parts.

2. Draw the graphs of f and g and compute their area on [0, 1].

3. We give
n∑
k=1

k =
n(n+ 1)

2
. Compute the approximation of the area by rectangles for f and

g with the regular subdivision.

1.3 Riemann Integral

De�nition 2.

Let f be a continuous (or piecewise continuous) on [a, b]. Let (σn) be a sequence of subdivisions
such that δ(σn) →

n→+∞
0. Then the sequence of the approximations by rectangles S(f, σn)

converges as n goes to in�nity, and we write :∫ b

a

f(x)dx = lim
n→+∞

S(f, σn).

We call the limit the integral of f on [a, b].

Remark 1.
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�

∫
is read sum as it deals with the limit of Σ.

� In f(x)dx, f(x) matches the f(xi), dx matches xi − xi−1 as δ(σ) tends to 0.
� The limit does not depend of the choice of the subdivisions (σn).
� If σn is a regular subdivision, we call the approximation by rectangles a Riemann Sum

on [a, b] and we get : ∫ b

a

f(x)dx = lim
n→+∞

n∑
k=1

f(a+ k
b− a
n

)
b− a
n

.

In particular, if [a, b] = [0, 1], we obtain

lim
n→+∞

n∑
k=1

f

(
k

n

)
1

n
=

∫ 1

0

f(x)dx.

Remark 2.

This integral does not make sense for some functions. For example, the function de�ned on
[0, 1] by f(x) = 1 if x ∈ Q and 0 otherwise is not integrable in this sense (this function will
however be integrable for the Lebesgue integral).

1.4 Fundamental properties

Let f and g be two Riemann integrable functions on an interval [a; b] and λ be a real number.

1.4.1 Linearity∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g∫ b

a

λf = λ

∫ b

a

f

1.4.2 Positivity

If f > 0 on the interval [a; b] then

∫ b

a

f > 0

1.4.3 Monotonicity

If g > f on [a; b] then :

∫ b

a

g >
∫ b

a

f .

1.4.4 Increase in absolute value∣∣∣∣∫ b

a

f

∣∣∣∣ 6 ∫ b

a

|f |
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1.4.5 Mean Inequality∣∣∣∣∫ b

a

fg

∣∣∣∣ 6 sup |f | ×
∫ b

a

|g|

In particular, (taking g=1) :

∣∣∣∣∫ b

a

f

∣∣∣∣ 6 sup |f | × (b− a)

1.4.6 Mean value of a function

The mean value of f on the interval [a; b] is : M =
1

b− a

∫ b

a

f

1.4.7 The addition property

∀c ∈ [a; b],

∫ b

a

f =

∫ c

a

f +

∫ b

c

f

1.4.8 Cauchy-Schwarz Inequality(∫ b

a

fg

)2

6
∫ b

a

f 2 ×
∫ b

a

g2

1.5 Area calculus

Property 1.

Let f be a continuous function on[a, b].

� If f is positive on [a, b] then

∫ b

a

f(x)dx is the area of the region bounded by the graph of

f , the x-axis and the vertical lines x = a and x = b.

� If f is negative on [a, b] then −
∫ b

a

f(x)dx is the area of the region bounded by the graph

of f , the x-axis and the vertical lines x = a and x = b.

� If f is of any sign,

∫ b

a

f(x)dx =
∑

areas of regions above the x axis−
∑

areas of regions below the x axis

2 Antiderivatives

2.1 De�nition and properties

De�nition 3.

Let's consider f : I → R and I a real interval. F : I → R is an antiderivative of f on I if and
only if F is di�erentiable on I and F ′ = f .

Proposition 1.

Let's consider f, F,G : I → R such that F is an antideriavtive of f on I, then G−F = K with
K a real constant. Thus antideriavtives of a function only di�er from a constant.

Example 3. 1. Give an antiderivative of f(x) = 4x3.

2. Give all the antiderivatives of the function g(x) = x3.
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2.2 Fundamental theorem of di�erential calculus

Let f be a continuous function on a real interval I and a ∈ I.The function F : x→
∫ x

a

f(t)dt

is the unique antiderivative of f which vanishes at a.
Thus we get : ∫ b

a

f(x)dx = F (b)− F (a) = [F (x)]ba

Remark 3.

Let f be a continuous function on the interval I, the not

∫
f(x)dx refers to any antiderivative

of f . Thus, for instance, we get :

∫
x2dx =

1

3
x3 + C

Remark 4. When the function is not continuous, the theorem does not make sense : A piecewise
function is integrable but has no antiderivative.

Example 4. Compute

∫ 3

1

x3dx.

2.3 Antiderivatives of usual functions

Let u be a function de�ned on the subset I of R.
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f(x) F (x) Foru(x) ∈ ...

u′uα, α 6= −1
uα+1

α + 1
R ifα ∈ N,R∗+ if α ∈ R− N

u′

u
ln |u| R∗+ orR∗−

u′ cosu sinu R
u′ sinu − cosu R
u′ tanu − ln | cosu| ]− π

2
;
π

2
[

u′eu eu R
u′ chu shu R
u′ shu chu R
u′ thx ln(chu) R
u′

1 + u2
Arctanu R

u′

1− u2
Argthu ]− 1; 1[

u′√
1− u2

Arcsinu ]− 1; 1[

u′√
1 + u2

Argshu R
u′√
u2 − 1

Argchu ]1; +∞[

u′

cos2(u)
tanu ]− π

2
;
π

2
[

u′

ch2 u
thu R

Example 5. Compute the following integrals :

1.

∫ π
2

0

1

t+ 1
+ cos(t) + etdt

2.

∫ 1

0

2x.ex
2

dx

3.

∫ π
2

0

sin(x)

1 + (cos(x))2
dx

3 Change of variable and integration by parts

3.1 Integration by parts

Let u, v : [a; b]→ R be of di�erentiability class C∞ on [a; b]. We get :∫ b

a

uv′ = [uv]ba −
∫ b

a

u′v

Example 6.

Calcuate

∫ 1

0

x sin(2x)dx
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3.2 Change of variable

3.2.1 General Case

Let f : I → R, be a continuous function on the interval I and φ : [a; b]→ I, of di�erentiability
class C1 on [a; b]. We get : ∫ b

a

f(φ(t))φ′(t)dt =

∫ φ(b)

φ(a)

f(x)dx

In practise, we may use this formula from the left to the to the right, otr from the right to the
left, to calulate an antiderivative :
From the left to the right

� We set x = φ(t), and replace φ(t) by x.
� We calculate dx = φ′(t)dt, and replace φ′(t)dt by dx.
� We change the limits of the integral : t varies from a a to b thus x varies from φ(a) à φ(b).

Example 7.

Calculate :

∫ π
4

0

dt

cos t
setting x = sin t

Compute

∫ 9

4

√
t

1 + t
by setting x =

√
t, then give antiderivatives for f(x) =

√
t

1 + t
.

From the right to the left

� We set x = φ(t), and replace x by φ(t).
� We calculate dx = φ′(t)dt, and replace dx by φ′(t)dt.
� We change the limits of the integral : x varies from φ(a) to φ(b) thus t varies from a to b.

Example 8.

Calculate :

∫ 1

0

√
1− x2 dx setting x = cos t and give an antiderivative for f(x) =

√
1− x2

To calculate an antiderivative

We ignore the limits of the integral.
� From the left to the right : we replace x by φ(t).
� From the right to the left : φ requires to be a bijection from I to f(I), thus we replace t
by φ−1(x).

Example 9.

Calculate antiderivatives in examples 7 et 8.

3.2.2 Case of trigonometric functions

If f(x) = cos(x)n sin(x)p, we can use trigonometric relations to transform an expression that
we don't know how to compute.

� Either using linearization : we recall that cos2 x =
1 + cos 2x

2
and sin2 x =

1− cos 2x

2
.

� If one of the power is odd, we can utilize the relation cos2 + sin2 = 1 :

Example 10.
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1. Compute

∫ π

0

(sin(t))2dt.

2. Compute

∫ π

0

(cos(x))3. sin(x)2dx.

If f is a function de�ned by f(t) =
P (cos(t), sin(t))

Q(cos(t), sin(t)))
where P and Q are polynomial functions,

one can try to compute the integral using an appropriate change of variables.

Example 11. Using the change of variable u = cos(t), compute

∫ b

a

(cos(t))3

sin(t)(1 + cos2(t))
dt.

4 To calculate antiderivatives

To calculate an antiderivative of f , we may use one of the following method :

1. use the inverse of derivatives formula : f is of the form
u′

u
, u′un, etc

2. Integration by parts
� Classical examples : f(x) = P (x)eax, f(x) = P (x) sin(ax) and f(x) = P (x) ln(Q(x)) with
P and Q two polynomial functions.

� If I is an antiderivative, then I is solution of a di�erential equation.

3. Case where f(x) = sinn x cosp x
� If n and p are even, then we linearize f .
� If n or p is odd, we write f as a sum u′uk with u = cos or u = sin.

4. Antiderivative of a rational function.
� We use partial fraction decomposition for f .

5. Change of variables

5 Application of integral calculus

5.1 Center of gravity of a homogeneous plate

Let S be an homogenenous plate with constant thickness and uniform density. The center of
gravity is computed tha,ks to a double integral, but in a the particular case where the surface
is bounded by the graph of a function f , the x-axis and the lines of equations x = a and x = b,
we get the point with coordinates :

xG =
1

A

∫ b

a

xf(x)dx et yG =
1

2A

∫ b

a

(f(x))2dx with A the area of the surface.

Example 12.

Calculate the center of inerty of the surface bounded by y = 2
√
x, the x-axis and the line x = h.

6 Exercises

Exercise 1. 1. Without computation, determine the value of

∫ π
2

−π
2

sin(t)dt.
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2. Draw the curve y =
√

1− x2 for x ∈ [−1, 1] (one can study y2). Deduce the value of∫ 1

−1

√
1− x2dx.

Exercise 2. Writing the limits of the following sequences using integrals :

1. un =
n∑
k=1

n+ k

n2 + k2

2. vn =
n∑
k=1

k

n2
sin(

kπ

n
)

3. wn =
1

n
n

√√√√ n∏
k=1

(n+ k)

For the last one, we could try to change the product into a sum...

Exercise 3. Compute

∫ 3

0

(x− 2)dx and give a graphical interpretation of it.

Exercise 4.

Compute the following integrals and antiderivatives :

1.

∫ 2

0

dx

(2x+ 1)3

2.

∫ 3

2

dt

(1− t)2

3.

∫ 1

0

du√
1 + u

4.

∫ 0

−1

√
1− xdx

5.

∫ 2

1

x2 + 1√
x

dx

6.

∫ 3

2

(1− t)2

t
√
t

dt

7.

∫
z√

z2 − 1
dz

8.

∫
t

1 + t2
dt

9.

∫
t+ 1

t2 + 4
dt

10.

∫
x

(1 + x2)2
dx

11.

∫
ex

chx
dx

12.

∫
x+ 1√
1− x2

dx

13.

∫ √
x− x3e2x + x2

x3
dx

Exercise 5.

1. Determine the average value over a period of a purely sinusoidal signal u(t) = u0cos(ωt+ϕ0)

2. The e�ective value ueff (t) is de�ned as the square root of the average on a period of u2(t).
The e�ective value is said to be the quadratic average of u. Let's determine ueff for the
previous signal.

Exercise 6.

Calculate those integrals and antiderivatives using an integration by parts

1.

∫ 1

0

x ln (1 + x) dx

2.

∫ 3

0

Arctan (2x) dx

3.

∫ 1

0

xArctanxdx

4.

∫
Arcsinxdx

5.

∫
θ sin 2θdθ

6.

∫
x2e−xdx

7.

∫
α

cos2 α
dα

8.

∫
x3 Arctanxdx

Exercise 7.

Compute

∫ √
x2 + 1dx using an integration by parts.
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Exercise 8. Compute this antiderivative(using a double integration by parts) :

I(x) =

∫ x

0

cos(2t)etdt

Exercise 9.

Calulate using linearization :

1.

∫
cos2 xdx 2.

∫
sh2 tdt 3.

∫
cos2 x sin 2xdx

Exercise 10.

Calulate without linearization :

1.

∫ π/2

0

cos5 xdx 2.

∫
sh3 tdt 3.

∫
cos2 x sin 2xdx

Exercise 11.

1. i) Find a, b ∈ R such that
1

(x− 1)(x− 4)
=

a

x− 1
+

b

x− 4
.

ii) Compute

∫ 3

2

1

t2 − 5t+ 4
dt.

2. Compute

∫ 2

0

x3

x+ 1
dx. One could write the numerator as a polynomial expression in (x+1).

Exercise 12.

Calculate those integrals (using the given change of variables) :

1.

∫ 0

−1

x3√
x+ 1

dx
(
t =
√
x+ 1

)

2.

∫ 2

1

1 +
√

1+x
x

x
dx with u =

√
1 + x

x

3.

∫ a
2

0

√
a2 − x2dx (x = a sin t)

4.

∫
sh3 x

ch5 x
dx (y = ch x)

5. Compute

∫
dx√

x+ 3
√
x
with u = 6

√
x

Exercise 13.

Compute the following integrals using the indicated change of variables :

1.

∫ π
4

0

tan4 θdθ, with x = tan(θ).

2.

∫ π
4

0

1

1 + tan x
dx with y = tan(x).

3.

∫ π
3

π
6

1

sin t
dt with x = cos(t).
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Exercise 14.

Let's consider an homogeneous plate made by the set of points M(x ;y) whose coordinates check :

0 6 x 6 2 et 0 6 y 6
x

x+ 1
. Donner les coordonnées du centre de gravité de la plaque.

Exercise 15.

A horizontal cylindrical vessel of length l and whose base radius is R, contains a liquid on a

height h. Show that the volume V of the liquid is : V = 2l

∫ h

0

√
R2 − (x−R)2dx

Calculate it using this change of variables : x−R = R sin θ
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