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LINEAR MAPS

Objectifs

� De�ne linear maps.

� understand image and kernel of a linear map.

� work on linear maps in �nite dimension.

In this chapter we use K wich represents either R or C.

1 Generalities

De�nition 1.

Let E and E ′ be two K vector spaces. Let f be a map from E to E ′. f is a linear map (or a
module homomorphism) if and only if it checks those properties :

(i) ∀x, y ∈ E, f(x+ y) = f(x) + f(y)
(ii) ∀x ∈ E,∀λ ∈ K, f(λ · x) = λ · f(x)

This means that f matches the structure of K vector space of E to E ′.

Example 1.

Are the following maps linear ?

1. Let E be K vector space and k ∈ K. The mapping from E into E : x 7→ k · x is called
homothety of factor k.

2. The mapping from R into R such that x 7→ x2.

Property 1.

If f is a linear mapping from E into E ′ then f(0E) = 0E′ .

Example 2.

1. Prove that property.

2. Is the converse true ?

Remark 1.

To show that a mapping is not linear, we can use the contraposition of the previous property,
namely, if we have f(0E) ̸= 0E′ then f is not linear.

Theorem 1 (Practical Theorem).
Let f be a map from E to E ′, two K vector spaces.

f is a linear map if and only if ∀x, y ∈ E,∀α ∈ K :

f(αx+ y) = αf(x) + f(y)

1



1A M2.2 2024-2025

Example 3.

1. Is the mapping from R2 into R3, de�ned by (x, y) 7→ (x− y, 0, y) a linear mapping ?

2. Prove the previous theorem.

De�nition 2.

Let E be a vector space of K. A linear form on E is a linear map from the vector space E to
its �eld of scalars K.

Example 4.

Are those maps linear forms ?

1. The map from R2 to R2 which maps (x, y) to 2(x, y).

2. The map from R2 to R which maps (x, y) to x2 + y2.

3. f 7→
∫ 1

0

f(t)dt where f ∈ C0 ([0, 1])

2 Operations on linear maps

De�nition 3.

We denote L (E,E ′) the set of linear maps of the vector-space E over K in the dans vector
space E ′ over K.

Theorem 2.

Let f, g be two linear maps from E into E ′ and k ∈ K. Then f +g and kf are linear maps from
E into E ′.

Proposition 3. L (E,E ′) is a vector space over K, as a sub-space of the vectoriel space of
maps between E to E ′.

Proposition 4. The composition of two linear maps is a linear map.

Example 5.

Prove the following theorem.

3 Endomorphisms

De�nition 4.

Let E be a vector space over K. An endomorphism of E is a linear map from E to itself. We
denote by L (E) the set of endomorphisms of E

Remark 2.

For endomorphisms, we use this noattion : f ◦ f ◦ f = f 3.

Example 6.

Why f 2 has no meaning if f is the linear map from R2 to R de�ned by f(x, y) = x ?
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4 Isomorphisms and automorphisms

De�nition 5.

Let f be a linear map from E to E ′ two vector spaces over K.
1. f is an isomorphism if and only if f is bijective.

2. f is an automorphism if and only if f is an endomorphism and is bijective, so is both
an endomorphism and an isomorphism.

Theorem 5.

The inverse of an isomorphism is an isomorphism.

Example 7.

� Is the vectoriel homothety of E of factor k an automorphism ? If yes, give its inverse.
� Is this map (x, y) 7→ x+ iy an isomorphism between R2 and C ? An automorphism ?
� Prove the previous theorem.

5 Kernel and image (or range)

5.1 Kernel

Example 8.

Let f be a linear map.
We already know that f(0E) = 0E′ .

1. Is it possible to �nd other vectors u such that f(u) = 0E′ ?

2. Prove that f is injective if and only if 0E is the only vector u of E satisfying f(u) = 0E′ .

De�nition 6.

Let E and E ′ be two vector spaces over K and let f be a linear map from E to E ′. The kernel
of f is the set :

Kerf = f−1({0E′}) = {x ∈ E/f(x) = 0E′}

Example 9.

1. Let's consider u : R3 → R2, (x, y, z) 7→ (y, x+ y + z). Find the kernel of u.

2. Let's consider u : R2 → R3, (x, y) 7→ (2x− y, x+ 2y, x+ y). Find the kernel of u.

Theorem 6.

The kernel of a linear map from E to E ′ is a vector sub-space of E.

Example 10.

Prove the previoud theorem.

From the previous example, we deduce the following theorem :

Theorem 7.

Let f be a linear map from E to E ′ then f is injective if and only if : Kerf = {0E}
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5.2 Image

De�nition 7.

Let E and E ′ be two vector spaces over K and f a linear map from E to E ′. The image (or
range) is the set :

Imf = f(E) = {f(x)/x ∈ E}

Example 11.

Find the image of the following linear maps :

1. Soit u : R3 → R2, (x, y, z) 7→ (y, x+ y + z).

2. Soit u : R2 → R3, (x, y) 7→ (2x− y, x+ 2y, x+ y).

Theorem 8.

The image of a linear map from E to E ′ is a vcetor sub-space of E ′.

Example 12.

Prove the previous theorem.

Theorem 9.

Let E and E ′ be two vector spaces over K and f : E → E ′ a linear map.
If S = (e1, . . . , ep) is a spanning set of E, which means E = V ect(e1, . . . , ep) then S ′ =

(f(e1), . . . , f(ep)) is a spanning set of Imf .

Remark 3.

This theorem allows to �nd the image of f Imf using only a spanning set of E.

Example 13.

1. With the previous theorem, �nd the image of the following linear maps :

(a) Soit u : R3 → R2, (x, y, z) 7→ (y, x+ y + z).

(b) Soit u : R2 → R3, (x, y) 7→ (2x− y, x+ 2y, x+ y).

2. Prove the previous theorem.

6 Linear maps in �nite dimension

6.1 Linear maps and family of vectors

Theorem 10.

Let E and E ′ be two vectr spaces ove K and f : E → E ′ a linear map.

1. f is injective ⇔ the image under f of all linearly independent family of vectors of E is
a linearly independent of E ′ : let B = (e1, . . . , ep) be a linearly independent family of
vectors of E, f is injective ⇔ (f(e1), . . . , f(ep)) is also a linearly independent family of
vectors of E ′.

2. f is surjective ⇔ the image under f of all spanning set of E is a spanning set of E ′ which
means : let B = (e1, . . . , ep)be any spanning set of E, f is surjective ⇔ (f(e1), . . . , f(ep))
is a spanning set of E ′.

3. f is bijective ⇔ the image under f of all basis of E is a basis of E ′ which means : let
B = (e1, . . . , ep) be a basis of E, f is bijective ⇔ (f(e1), . . . , f(ep)) is also a basis of E ′.
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6.2 Rank nullity theorem

Theorem 11.

Let f be a linear map from E to E ′, then :

dimKer f + dimℑmf = dimE

Remark 4.

1. Let's denote that dimImf ⩽ dimE

2. Due to the rank nullity theorem the dimension of the codomain has no in�uence

Example 14.

Write the rank nullity theorem for this map u : R2 → R2, (x, y) 7→ (0, x+ y).

Example 15.

Prove the rank nullity theorem.

6.3 Rank for a linear map

De�nition 8.

Let E and E ′ be two �nite dimensional K vector spaces and f a linear map from E to E ′. We
call rank of f the dimension of ℑmf .

Remark 5.

Thus, the theorem of rank is also written : rg(f) = dimE − dimKer f

Theorem 12.

Let (e1, . . . , en) be a basis of E. Then for all linear map f from E to E ′ we have : rg(f) =
rg(f(e1), . . . , f(en))

Example 16.

Let f the function de�ned onR3 by f(x, y, z) = (x+ y, y + z, 2x+ y − z)

Determine the rank of this functions using two methods (f (⃗i), f (⃗j), f(k⃗)) where (⃗i, j⃗, k⃗) is
a basis of R3.

Theorem 13.

Let E and E ′ be two K vector spaces of �nite dimensiosn and f A linear mapping of E into E ′

then we have the following equivalences :
� f is injective ⇔ rg(f) = dimE
� f is surjective ⇔ rg(f) = dimE ′

� f is bijective ⇔ dimE = rg(f) = dimE ′

6.4 How to characterize isomorphisms

Theorem 14.

Let E and E ′ be two �nite dimensional vector spaces over K with the same dimension and f
a linear map from E to E ′. The following sentences are equivalent :

i) f is injective.

5



6.4 How to characterize isomorphisms 1A M2.2 2024-2025

ii) f is surjective.

iii) f is bijective.

And therefore its corollary :

Corollary 15.

Let E be a vector space over K of �nite dimension, f an endomorphism of E dans E.
We get : f is an automorphism of E E ⇔ Kerf = {0E} ⇔ Imf = E

Example 17.

Prove that the linear map f from R2 to itself de�ned by : f(1, 0) = (2, 2) et f(0, 1) = (1, 3) is
an automorphism of R2.

Example 18.

Let

f :

{
R2 → R3

(x, y) 7→ (x, x+ y, y)

Show that f is injective but not surjective.
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7 Exercises

Exercise 1.

Which of the following mappings are linear ?

f1 :

{
R3 → R2

(x, y, z) 7→ (x− z, x+ y)

f2 :

{
R3 → R3

(x, y, z) 7→ (xz, x, x+ z)

f3 :

{
C1 (R) → C0 (R)
f 7→ f + f ′

f4 :

{
R2 → R3

(x, y) 7→ (x+ y, x, y)

f5 :

C
0 (R) → C0 (R)

f 7→
∫ x

a

f(t)dt

f6 :

{
R2 → R2

(x, y) 7→ (x+ 1, y)

f7 :

{
C(R) → C(R)
f 7→ 2f

Exercise 2.

Are the following linear forms ?

1. The null mapping of E in K.
2. (x, y) 7→ ax+ by where (x, y, a, b) ∈ R4.

3. Let u0 be a vector of R2. The mapping which for all u of R2 associates it's scalar product
with u0.

Exercise 3.

For linear maps in exercise 1, determine their kernel and image. Specify whether the func-
tions are injective and / or surjective.

Exercise 4.

Let p be the map de�ned by : p :

{
R2 → R2

(x, y) 7→ (4x− 6y, 2x− 3y)

1. Show that p is linear

2. Show that p is a projection ie p ◦ p = p.

3. Determine Ker p et Im p.

4. Is p injective, surjective ?

5. Show that ∀y ∈ Im(p), p(y) = y.

6. Show that if p is an endomorphism such taht p ◦ p = p then Ker(p)⊕ Im(p) = R2.

7. Deduce a graphical construction of p(u).

Exercise 5.

Let R2 have it's canonical basis
(⃗
i, j⃗

)
and R4 have it's canonical basis (e⃗1, e⃗2, e⃗3, e⃗4). Let ϕ :

R4 → R2 be de�ned by :

ϕ (xe⃗1 + ye⃗2 + ze⃗3 + te⃗4) = (x+ y + 2z + t) i⃗+ (2x− y + 2z − 7t) j⃗

Assuming ϕ is a linear mapping, determine Ker ϕ and Im ϕ.
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Exercise 6.

Let f be a linear mapping from R2 into R5, de�ned by x = (α, β) of R2 :

f(x) = (α + 2β,−2α + 3β, α + β, 3α + 5β,−α + 2β)

. We admit that f is a linear map.

1. Determine Ker (f) and its dimension.

2. Determine ℑm (f) and its dimension.

Exercise 7.

Considering the vector space E = C∞ (R), let f1(x) = ex, f2 (x) = e2x, f3 (x) = e3x.

1. Determine the dimension of the vector subspace F of E de�ned by F = V ect (f1, f2, f3)

2. Let ϕ : F → F , be de�ned by ∀f ∈ F, ϕ (f) = f ′′ + f ′ − 3f . show that ϕ is an
endomorphism of F .

3. Is ϕ an automorphism ?

Exercise 8.

Let f be a function from R2 into R2 de�ned by f : (x, y) 7→ (x+ y, x− y).

1. Show that f is an automorphism of R2.

2. determine its inverse.

Exercise 9.

Let E and E ′ be two �nite-dimensional vector spaces, and f be a linear mapping of E into E ′.
Are the following statements true or false ?

1. It is possible to have non-bijective f and dim E = dim E ′.

2. It is possible to have non-bijective f and dim E = dim Im f .

3. It is possible to have f non bijective and dim E ′ = dim Im f .

4. If rg f = 5 and dim E ′ = 3, then we don't know dim Ker f .

5. If dim E=5, and f surjective then dim E ′=5.

6. If F = (u1, u2, u3) is a linearly dependent set of E, then f(F) is a linearly dependent
set of E ′.

7. If F = (u1, u2) is a linearly independent set of E, then f(F) is a linearly independent
set of E ′.

Exercise 10.

Let a, b, c real numbers with c ̸= 0. We consider in R3, the vector : w = ( a, b, c ).

Let Bc = (
−→
i ,

−→
j ,

−→
k ) be a basis of R3.

Let f be an endomorphism of R3 such that for all vectors t = (x, y, z ) of R3 f ( t) =
( c y − b z, a z − c x, b x− a y ).

1. Show that w ∈ Ker ( f ).

2. Show that the set
(
f (

−→
i ), f (

−→
j )

)
is linearly independent.

3. Deduce that Ker ( f ) = V ect (w ) and determine a basis of ℑm ( f ).
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4. Is f injective ? Futhermore (⃗i, j⃗) and
(
f (

−→
i ), f (

−→
j )

)
are not collinear. Is this in

contradiction with 1) of theorem 10 ?

Exercise 11.

Let (⃗i, j⃗, k⃗) a basis of R3 and f a mapping of R3 into R3 de�ned by :
f(x, y, z) = (y − x, y + z, x).

1. Show that f is an automorphism of R3.

2. Give the rank of f .

3. Let F = Vect(f (⃗i), f (⃗j)) and G = Vect(f (⃗i), f(k⃗)).
Without any calculation determine F ∩G.

Exercise 12.

In R2, we de�ne an endomorphism u by :
∀ (x, y) ∈ R2, u (x, y) = (2x− y, x+ y) .

1. What is the rank of u ? Deduce that u is an automorphism.

2. Let X = (x, y) be a vector of R2.

(a) Determine the image of X by u ◦ u.
(b) What can be said of the set (X, u (X) , u ◦ u (X)) ? Deduce three non zero reals α, β, ε

independent of x and y such that : αu ◦ u (X) + βu (X) + εX = 0.

(c) Deduce that the endomorphism v = αu ◦ u+ βu+ εId is the null endomorphism.

(d) Composing v by u−1, deduce u−1 as function of u and Id. Determine the coordinates
of u−1 (X) as a function of x and y.

Exercise 13. (optional)
Let f and g be two endomorphisms of K vector space E.

Show that ℑm (g ◦ f) ⊂ ℑm (g) and Ker (f) ⊂ Ker (g ◦ f).
Exercise 14. (optional)
Let E be a Kk vector space of dimension 3. Let g be an endomorphism of E satisfying g2 ̸= 0
and g3 = 0.

1. Check the following inclusions : 0E ⊂ Ker g ⊂ Ker g2 ⊂ E.

2. Show that 1 ⩽ dim Ker g ⩽ 2

Exercise 15. (optional)
Let F and G be two vector subspaces of a vector space E of �nite dimension.

1. Considering ϕ :

{
F ×G→ E

(x, y) 7→ x+ y
et ψ :

{
F ∩G→ F ×G

x 7→ (x,−x)
.

(a) Show that ϕ and ψ are linear mappings

(b) On what conditions on F and G, is ϕ an isomorphism ?

(c) Compare Ker ϕ and Im ψ.

(d) Justify dim Im ψ = dim F ∩G.
2. Show that dim F ×G = dim F + dim G.

3. Deduce, using the rank formula, a proof of the Grassmann formula :

dim F +G = dim F + dim G− dim F ∩G
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