LINEAR MAPS

Objectifs

- Define linear maps.
- understand image and kernel of a linear map.
- work on linear maps in finite dimension.

In this chapter we use \mathbb{K} wich represents either \mathbb{R} or \mathbb{C} .

1 Generalities

Definition 1.

Let E and E' be two K vector spaces. Let f be a map from E to E'. f is a linear map (or a module homomorphism) if and only if it checks those properties :

- (i) $\forall x, y \in E, f(x+y) = f(x) + f(y)$
- (ii) $\forall x \in E, \forall \lambda \in K, f(\lambda \cdot x) = \lambda \cdot f(x)$

This means that f matches the structure of K vector space of E to E'.

Example 1.

Are the following maps linear?

- 1. Let E be K vector space and $k \in K$. The mapping from E into $E: x \mapsto k \cdot x$ is called homothety of factor k.
- 2. The mapping from \mathbb{R} into \mathbb{R} such that $x \mapsto x^2$.

Property 1.

If f is a linear mapping from E into E' then $f(0_E) = 0_{E'}$.

Example 2.

- 1. Prove that property.
- 2. Is the converse true?

Remark 1.

To show that a mapping is not linear, we can use the contraposition of the previous property, namely, if we have $f(0_E) \neq 0_{E'}$ then f is not linear.

Theorem 1 (Practical Theorem).

Let f be a map from E to E', two K vector spaces.

f is a linear map if and only if $\forall x, y \in E, \forall \alpha \in K$:

$$f(\alpha x + y) = \alpha f(x) + f(y)$$

Example 3.

- 1. Is the mapping from \mathbb{R}^2 into \mathbb{R}^3 , defined by $(x, y) \mapsto (x y, 0, y)$ a linear mapping?
- 2. Prove the previous theorem.

Definition 2.

Let E be a vector space of K. A linear form on E is a linear map from the vector space E to its field of scalars K.

Example 4.

Are those maps linear forms?

- 1. The map from \mathbb{R}^2 to \mathbb{R}^2 which maps (x, y) to 2(x, y).
- 2. The map from \mathbb{R}^2 to \mathbb{R} which maps (x, y) to $x^2 + y^2$.

3.
$$f \mapsto \int_0^1 f(t)dt$$
 where $f \in \mathcal{C}^0([0,1])$

2 Operations on linear maps

Definition 3.

We denote $\mathcal{L}(E, E')$ the set of linear maps of the vector-space E over K in the dans vector space E' over K.

Theorem 2.

Let f, g be two linear maps from E into E' and $k \in \mathbb{K}$. Then f + g and kf are linear maps from E into E'.

Proposition 3. $\mathcal{L}(E, E')$ is a vector space over K, as a sub-space of the vectorial space of maps between E to E'.

Proposition 4. The composition of two linear maps is a linear map.

Example 5.

Prove the following theorem.

3 Endomorphisms

Definition 4.

Let E be a vector space over K. An endomorphism of E is a linear map from E to itself. We denote by $\mathcal{L}(E)$ the set of endomorphisms of E

Remark 2.

For endomorphisms, we use this noattion : $f \circ f \circ f = f^3$.

Example 6.

Why f^2 has no meaning if f is the linear map from \mathbb{R}^2 to \mathbb{R} defined by f(x, y) = x?

4 Isomorphisms and automorphisms

Definition 5.

Let f be a linear map from E to E' two vector spaces over K.

- 1. f is an isomorphism if and only if f is bijective.
- 2. f is an automorphism if and only if f is an endomorphism and is bijective, so is both an endomorphism and an isomorphism.

Theorem 5.

The inverse of an isomorphism is an isomorphism.

Example 7.

- Is the vectorial homothety of E of factor k an automorphism? If yes, give its inverse.
- Is this map $(x, y) \mapsto x + iy$ an isomorphism between \mathbb{R}^2 and \mathbb{C} ? An automorphism?
- Prove the previous theorem.

5 Kernel and image (or range)

5.1 Kernel

Example 8.

Let f be a linear map.

We already know that $f(0_E) = 0_{E'}$.

- 1. Is it possible to find other vectors u such that $f(u) = 0_{E'}$?
- 2. Prove that f is injective if and only if 0_E is the only vector u of E satisfying $f(u) = 0_{E'}$.

Definition 6.

Let E and E' be two vector spaces over K and let f be a linear map from E to E'. The **kernel** of f is the set :

$$Kerf = f^{-1}(\{0_{E'}\}) = \{x \in E/f(x) = 0_{E'}\}$$

Example 9.

- 1. Let's consider $u: \mathbb{R}^3 \to \mathbb{R}^2, (x, y, z) \mapsto (y, x + y + z)$. Find the kernel of u.
- 2. Let's consider $u: \mathbb{R}^2 \to \mathbb{R}^3, (x, y) \mapsto (2x y, x + 2y, x + y)$. Find the kernel of u.

Theorem 6.

The kernel of a linear map from E to E' is a vector sub-space of E.

Example 10.

Prove the previoud theorem.

From the previous example, we deduce the following theorem :

Theorem 7.

Let f be a linear map from E to E' then f is injective if and only if : $Kerf = \{0_E\}$

5.2 Image

Definition 7.

Let E and E' be two vector spaces over K and f a linear map from E to E'. The **image** (or range) is the set :

$$Imf = f(E) = \{f(x) | x \in E\}$$

Example 11.

Find the image of the following linear maps :

- 1. Soit $u : \mathbb{R}^3 \to \mathbb{R}^2, (x, y, z) \mapsto (y, x + y + z).$
- 2. Soit $u : \mathbb{R}^2 \to \mathbb{R}^3$, $(x, y) \mapsto (2x y, x + 2y, x + y)$.

Theorem 8.

The image of a linear map from E to E' is a vector sub-space of E'.

Example 12.

Prove the previous theorem.

Theorem 9.

Let E and E' be two vector spaces over K and $f: E \to E'$ a linear map.

If $S = (e_1, \ldots, e_p)$ is a spanning set of E, which means $E = Vect(e_1, \ldots, e_p)$ then $S' = (f(e_1), \ldots, f(e_p))$ is a spanning set of Imf.

Remark 3.

This theorem allows to find the image of f Imf using only a spanning set of E.

Example 13.

- 1. With the previous theorem, find the image of the following linear maps :
 - (a) Soit $u : \mathbb{R}^3 \to \mathbb{R}^2, (x, y, z) \mapsto (y, x + y + z).$
 - (b) Soit $u : \mathbb{R}^2 \to \mathbb{R}^3$, $(x, y) \mapsto (2x y, x + 2y, x + y)$.
- 2. Prove the previous theorem.

6 Linear maps in finite dimension

6.1 Linear maps and family of vectors

Theorem 10.

Let E and E' be two vectr spaces ove K and $f: E \to E'$ a linear map.

- 1. f is injective \Leftrightarrow the image under f of all linearly independent family of vectors of E is a linearly independent of E': let $B = (e_1, \ldots, e_p)$ be a linearly independent family of vectors of E, f is injective $\Leftrightarrow (f(e_1), \ldots, f(e_p))$ is also a linearly independent family of vectors of E'.
- 2. f is surjective \Leftrightarrow the image under f of all spanning set of E is a spanning set of E' which means : let $B = (e_1, \ldots, e_p)$ be any spanning set of E, f is surjective $\Leftrightarrow (f(e_1), \ldots, f(e_p))$ is a spanning set of E'.
- 3. f is bijective \Leftrightarrow the image under f of all basis of E is a basis of E' which means : let $B = (e_1, \ldots, e_p)$ be a basis of E, f is bijective $\Leftrightarrow (f(e_1), \ldots, f(e_p))$ is also a basis of E'.

6.2 Rank nullity theorem

Theorem 11.

Let f be a linear map from E to E', then :

$$\dim \operatorname{Ker} f + \dim \Im m f = \dim E$$

Remark 4.

- 1. Let's denote that $dimImf \leq dimE$
- 2. Due to the rank nullity theorem the dimension of the codomain has no influence

Example 14.

Write the rank nullity theorem for this map $u: \mathbb{R}^2 \to \mathbb{R}^2, (x, y) \mapsto (0, x + y).$

Example 15.

Prove the rank nullity theorem.

6.3 Rank for a linear map

Definition 8.

Let E and E' be two finite dimensional \mathbb{K} vector spaces and f a linear map from E to E'. We call rank of f the dimension of $\Im mf$.

Remark 5.

Thus, the theorem of rank is also written : $rg(f) = \dim E - \dim \operatorname{Ker} f$

Theorem 12.

Let (e_1, \ldots, e_n) be a basis of E. Then for all linear map f from E to E' we have $: \operatorname{rg}(f) = \operatorname{rg}(f(e_1), \ldots, f(e_n))$

Example 16.

Let f the function defined on \mathbb{R}^3 by f(x, y, z) = (x + y, y + z, 2x + y - z)

Determine the rank of this functions using two methods $(f(\vec{i}), f(\vec{j}), f(\vec{k}))$ where $(\vec{i}, \vec{j}, \vec{k})$ is a basis of \mathbb{R}^3 .

Theorem 13.

Let E and E' be two \mathbb{K} vector spaces of finite dimensions and f A linear mapping of E into E' then we have the following equivalences :

- f is injective \Leftrightarrow rg $(f) = \dim E$
- f is surjective \Leftrightarrow rg $(f) = \dim E'$
- f is bijective $\Leftrightarrow \dim E = \operatorname{rg}(f) = \dim E'$

6.4 How to characterize isomorphisms

Theorem 14.

Let E and E' be two finite dimensional vector spaces over K with the same dimension and f a linear map from E to E'. The following sentences are equivalent :

i) f is injective.

ii) f is surjective.

iii) f is bijective.

And therefore its corollary :

Corollary 15.

Let *E* be a vector space over *K* of finite dimension, *f* an endomorphism of *E* dans *E*. We get : *f* is an automorphism of $E \ E \Leftrightarrow Kerf = \{0_E\} \Leftrightarrow Imf = E$

Example 17.

Prove that the linear map f from \mathbb{R}^2 to itself defined by : f(1,0) = (2,2) et f(0,1) = (1,3) is an automorphism of \mathbb{R}^2 .

Example 18.

Let

$$f: \begin{cases} \mathbb{R}^2 \to \mathbb{R}^3\\ (x,y) \mapsto (x,x+y,y) \end{cases}$$

Show that f is injective but not surjective.

Exercises 7

Exercise 1.

Which of the following mappings are linear?

$$f_{1}: \begin{cases} \mathbb{R}^{3} \to \mathbb{R}^{2} \\ (x, y, z) \mapsto (x - z, x + y) \\ f_{2}: \begin{cases} \mathbb{R}^{3} \to \mathbb{R}^{3} \\ (x, y, z) \mapsto (xz, x, x + z) \\ f_{3}: \begin{cases} C^{1}(\mathbb{R}) \to C^{0}(\mathbb{R}) \\ f \mapsto f + f' \\ f_{4}: \end{cases} \begin{cases} \mathbb{R}^{2} \to \mathbb{R}^{3} \\ (x, y) \mapsto (x + y, x, y) \end{cases}$$

$$f_{5}: \begin{cases} C^{0}(\mathbb{R}) \to C^{0}(\mathbb{R}) \\ f \mapsto \int_{a}^{x} f(t) dt \\ f$$

Exercise 2.

Are the following linear forms?

- 1. The null mapping of E in \mathbb{K} .
- 2. $(x, y) \mapsto ax + by$ where $(x, y, a, b) \in \mathbb{R}^4$.
- 3. Let u_0 be a vector of \mathbb{R}^2 . The mapping which for all u of \mathbb{R}^2 associates it's scalar product with u_0 .

Exercise 3.

For linear maps in exercise 1, determine their kernel and image. Specify whether the functions are injective and / or surjective.

Exercise 4.

Let p be the map defined by : $p: \begin{cases} \mathbb{R}^2 \to \mathbb{R}^2 \\ (x,y) \mapsto (4x - 6y, 2x - 3y) \end{cases}$

- 1. Show that p is linear
- 2. Show that p is a projection if $p \circ p = p$.
- 3. Determine Ker p et Im p.
- 4. Is p injective, surjective?
- 5. Show that $\forall y \in Im(p), \ p(y) = y$.
- 6. Show that if p is an endomorphism such that $p \circ p = p$ then $Ker(p) \oplus Im(p) = \mathbb{R}^2$.
- 7. Deduce a graphical construction of p(u).

Exercise 5.

Let \mathbb{R}^2 have it's canonical basis (\vec{i}, \vec{j}) and \mathbb{R}^4 have it's canonical basis $(\vec{e_1}, \vec{e_2}, \vec{e_3}, \vec{e_4})$. Let ϕ : $\mathbb{R}^4 \to \mathbb{R}^2$ be defined by :

$$\phi(x\vec{e_1} + y\vec{e_2} + z\vec{e_3} + t\vec{e_4}) = (x + y + 2z + t)\vec{i} + (2x - y + 2z - 7t)\vec{j}$$

Assuming ϕ is a linear mapping, determine Ker ϕ and Im ϕ .

Exercise 6.

Let f be a linear mapping from \mathbb{R}^2 into \mathbb{R}^5 , defined by $x = (\alpha, \beta)$ of \mathbb{R}^2 :

$$f(x) = (\alpha + 2\beta, -2\alpha + 3\beta, \alpha + \beta, 3\alpha + 5\beta, -\alpha + 2\beta)$$

- . We admit that f is a linear map.
 - 1. Determine $\operatorname{Ker}(f)$ and its dimension.
 - 2. Determine $\Im m(f)$ and its dimension.

Exercise 7.

Considering the vector space $E = C^{\infty}(\mathbb{R})$, let $f_1(x) = e^x$, $f_2(x) = e^{2x}$, $f_3(x) = e^{3x}$.

- 1. Determine the dimension of the vector subspace F of E defined by $F = Vect(f_1, f_2, f_3)$
- 2. Let $\phi : F \to F$, be defined by $\forall f \in F, \phi(f) = f'' + f' 3f$. show that ϕ is an endomorphism of F.
- 3. Is ϕ an automorphism?

Exercise 8.

Let f be a function from \mathbb{R}^2 into \mathbb{R}^2 defined by $f: (x, y) \mapsto (x + y, x - y)$.

- 1. Show that f is an automorphism of \mathbb{R}^2 .
- 2. determine its inverse.

Exercise 9.

Let E and E' be two finite-dimensional vector spaces, and f be a linear mapping of E into E'. Are the following statements true or false?

- 1. It is possible to have non-bijective f and dim $E = \dim E'$.
- 2. It is possible to have non-bijective f and dim $E = \dim \operatorname{Im} f$.
- 3. It is possible to have f non bijective and dim $E' = \dim \operatorname{Im} f$.
- 4. If rg f = 5 and dim E' = 3, then we don't know dim Ker f.
- 5. If dim E=5, and f surjective then dim E'=5.
- 6. If $\mathcal{F} = (u_1, u_2, u_3)$ is a linearly dependent set of E, then $f(\mathcal{F})$ is a linearly dependent set of E'.
- 7. If $\mathcal{F} = (u_1, u_2)$ is a linearly independent set of E, then $f(\mathcal{F})$ is a linearly independent set of E'.

Exercise 10.

Let a, b, c real numbers with $c \neq 0$. We consider in \mathbb{R}^3 , the vector : w = (a, b, c).

Let $\mathcal{B}_c = (\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ be a basis of \mathbb{R}^3 .

Let f be an endomorphism of \mathbb{R}^3 such that for all vectors t = (x, y, z) of $\mathbb{R}^3 f(t) = (c y - b z, a z - c x, b x - a y)$.

- 1. Show that $w \in \text{Ker}(f)$.
- 2. Show that the set $(f(\overrightarrow{i}), f(\overrightarrow{j}))$ is linearly independent.
- 3. Deduce that Ker (f) = Vect(w) and determine a basis of $\Im m(f)$.

4. Is f injective? Futhermore (\vec{i}, \vec{j}) and $(f(\vec{i}), f(\vec{j}))$ are not collinear. Is this in contradiction with 1) of theorem 10?

Exercise 11.

Let $(\vec{i}, \vec{j}, \vec{k})$ a basis of \mathbb{R}^3 and f a mapping of \mathbb{R}^3 into \mathbb{R}^3 defined by :

- f(x, y, z) = (y x, y + z, x).
- 1. Show that f is an automorphism of \mathbb{R}^3 .
- 2. Give the rank of f.
- 3. Let $F = \mathcal{V}ect(f(\vec{i}), f(\vec{j}))$ and $G = \mathcal{V}ect(f(\vec{i}), f(\vec{k}))$. Without any calculation determine $F \cap G$.

Exercise 12.

In \mathbb{R}^2 , we define an endomorphism u by :

 $\forall (x, y) \in \mathbb{R}^2, \quad u(x, y) = (2x - y, x + y).$

- 1. What is the rank of u ? Deduce that u is an automorphism.
- 2. Let X = (x, y) be a vector of \mathbb{R}^2 .
 - (a) Determine the image of X by $u \circ u$.
 - (b) What can be said of the set $(X, u(X), u \circ u(X))$? Deduce three non zero reals $\alpha, \beta, \varepsilon$ independent of x and y such that : $\alpha u \circ u(X) + \beta u(X) + \varepsilon X = 0$.
 - (c) Deduce that the endomorphism $v = \alpha u \circ u + \beta u + \varepsilon I d$ is the null endomorphism.
 - (d) Composing v by u^{-1} , deduce u^{-1} as function of u and Id. Determine the coordinates of $u^{-1}(X)$ as a function of x and y.

Exercise 13. (optional)

Let f and g be two endomorphisms of \mathbb{K} vector space E.

Show that $\Im m (g \circ f) \subset \Im m (g)$ and $\operatorname{Ker} (f) \subset \operatorname{Ker} (g \circ f)$.

Exercise 14. (optional)

Let E be a Kk vector space of dimension 3. Let g be an endomorphism of E satisfying $g^2 \neq 0$ and $g^3 = 0$.

- 1. Check the following inclusions : $0_E \subset \text{Ker } g \subset \text{Ker } g^2 \subset E$.
- 2. Show that $1 \leq \dim \operatorname{Ker} g \leq 2$

Exercise 15. (optional)

Let F and G be two vector subspaces of a vector space E of finite dimension.

1. Considering
$$\phi : \begin{cases} F \times G \to E\\ (x,y) \mapsto x+y \end{cases}$$
 et $\psi : \begin{cases} F \cap G \to F \times G\\ x \mapsto (x,-x) \end{cases}$

- (a) Show that ϕ and ψ are linear mappings
- (b) On what conditions on F and G, is ϕ an isomorphism?
- (c) Compare Ker ϕ and Im ψ .
- (d) Justify dim Im $\psi = \dim F \cap G$.
- 2. Show that dim $F \times G = \dim F + \dim G$.
- 3. Deduce, using the rank formula, a proof of the Grassmann formula :

 $\dim F + G = \dim F + \dim G - \dim F \cap G$