

Sequence

Objectives

- Know general concepts and definitions
- Compute sequence limits.
- Know general theorems on limits.
- Be able to study recursive sequences.

Link to example file in pdf : sequence example.pdf

Link to example file in pdf : sequence exercises.pdf

1 Definitions

1.1 Sequences

Definition 1.

A sequence of real numbers is a collection $(u_n)_{n\in\mathbb{N}}$ of real numbers indexed in \mathbb{N} . We say that u_n is the **member or term** of the sequence $(u_n)_{n\in\mathbb{N}}$. In other words, to give a real sequence is to give an application : $\begin{array}{c} \mathbb{N} \to \mathbb{R} \\ n \mapsto u_n \end{array}$

Remark 1.

For convenience, the general term u_n is sometimes defined only from a certain rank n_0 . We then write the sequence $(u_n)_{n \ge n_0}$. Throughout this chapter, everything that is defined from 0 is easy to transpose for n_0 .

Definition 2.

Let P be a property relating to the real sequences. We say that a $(u_n)_{n\in\mathbb{N}}$ satisfies P from a certain rank if and only if there is a natural number n_0 such that the $(u_n)_{n\geq n_0}$ satisfies the P property.

The sequences studied in this chapter are defined in two different ways :

- 1. Each term is defined from the preceding terms. Example : for $n \ge 0$, $u_{n+1} = \sqrt{u_n + 2}$ and $u_0 = 1$ In paragraph 5, the follow-up to $u_{n+1} = f(u_n)$.
- 2. Each term is defined from its rank.

Examples :
$$u_n = n^2 + \ln(n+1)$$
 or $u_n = \sum_{k=1}^n \frac{1}{k}$

Example 1. Compute the first 3 terms of those sequences.

```
Video : Correction example 1
```


1.2 Reasoning by induction

Let n be an integer and P(n) a property. If :

- Initialization or base case : There is an integer n_0 such that $P(n_0)$ is true.
- Inheritance or inductive step : for every integer $m \ge n_0$, P(m) true implies that P(m+1) is true.

Then P(n) is true for all $n \ge n_0$.

Example 2. Show by induction that :
$$\sum_{k=1}^{k=n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

 \checkmark Video : Correction example 2

1.3 Arithmetic sequences and geometric sequences.

1.3.1 Arithmetic sequences

Definition 3. Let $r \in \mathbb{R}$. An **arithmetic** sequence of common difference r is a sequence $(u_n)_{n \in \mathbb{N}}$ given by the first term u_p and the inductive formula :

$$\forall n \in \mathbb{N}, u_{n+1} = u_n + r$$

We then have :

$$\forall n \in \mathbb{N}, u_n = u_p + (n-p)r$$

Property 1. Sum of consecutive terms

The sum of the consecutive terms of an arithmetic sequence is equal to

number of terms
$$\frac{1st \ term + \ last \ term}{2}$$

In particular : $\sum_{k=1}^{n} k = 1 + 2 + ... + n = \frac{n(n+1)}{2}$

1.3.2 Geometric sequences

Definition 4. Let $q \in \mathbb{R}^*$. A geometric sequence of common ratio q is a sequence $(u_n)_{n \in \mathbb{N}}$ given by the first term u_p and the inductive formula :

$$\forall n \in \mathbb{N}, u_{n+1} = qu_n$$

We then have :

$$\forall n \in \mathbb{N}, u_n = u_p q^{n-p}$$

Property 2. Sum of consecutive terms

The sum of the consecutive terms of a geometric sequence whose common ratio is different from 1 is equal to

$$1st term \frac{1 - common ratio^{number of terms}}{1 - common ratio}$$

In particular : if $q \neq 1$, $\sum_{k=0}^{n} q^{k} = 1 + q + ... + q^{n} = \frac{1 - q^{n+1}}{1 - q}$

1.4 bounded sequences

Definition 5.

Let $(u_n)_{n \in \mathbb{N}}$ be a real sequence.

1. The sequence $(u_n)_{n\in\mathbb{N}}$ is said to be bounded from **above** if and only if there exist a real number M so that :

$$\forall n \in \mathbb{N}, u_n \leqslant M$$

2. The sequence $(u_n)_{n\in\mathbb{N}}$ is said to be bounded from **below** if and only if there exist a real number m so that :

$$\forall n \in \mathbb{N}, u_n \geqslant m$$

3. The sequence $(u_n)_{n \in \mathbb{N}}$ is said to be **bounded** if it is bounded from above and below

Example 3. Are the following sequences bounded?

1.
$$u_n = \frac{1}{n}, n > 0$$

2. $u_n = \frac{n^2 + 1}{n + 3}$
3. $u_n = (-1)^n \cos(n)$.

 \checkmark Video : Correction example 3

Remark 2.

The sequence $(u_n)_{n\in\mathbb{N}}$ is bounded if and only if $(|u_n|)_{n\in\mathbb{N}}$ is bounded from above in there exist $M \ge 0$ so that :

$$\forall n \in \mathbb{N}, |u_n| \leqslant M$$

This widely used property also has the merit of being able to be used with complex sequences.

2 Variations

Definition 6.

Let $(u_n)_{n \in \mathbb{N}}$ a real sequence.

- 1. We say that $(u_n)_{n \in \mathbb{N}}$ is **increasing** (respectively **strictly increasing**) from the rank n_0 if and only if we have : $\forall n \ge n_0, u_n \le u_{n+1}$ (respectively $\forall n \ge n_0, u_n < u_{n+1}$)
- 2. We say that $(u_n)_{n \in \mathbb{N}}$ is **decreasing** (respectively **strictly decreasing**) from the rank n_0 if and only if we have : $\forall n \ge n_0, u_n \ge u_{n+1}$ (respectively $\forall n \ge n_0, u_n > u_{n+1}$)
- 3. We say that $(u_n)_{n \in \mathbb{N}}$ is monotonic (respectively strictement monotonic) from the rank n_0 if and only if it is decreasing or increasing (respectively strictly decreasing or increasing) from the rank n_0 .
- 4. We say that $(u_n)_{n\in\mathbb{N}}$ is **constant** if and only if we have $: \forall n \in \mathbb{N}, u_n = u_{n+1}$. We say that $(u_n)_{n\in\mathbb{N}}$ is **stationary** if and only if it is constant starting from a certain rank.

Property 3.

When $(u_n)_{n\in\mathbb{N}}$ is a sequence with strictly positive terms starint a certain rank n_0 , It may be useful to use the following equivalent form of the definition :

 $\begin{array}{l} - (u_n)_{n \in \mathbb{N}} \text{ Is increasing from rank } n_0 \Leftrightarrow \forall n \in \mathbb{N}, \ n \ge n_0, \ \frac{u_{n+1}}{u_n} \ge 1 \\ - (u_n)_{n \in \mathbb{N}} \text{ Is decreasing from rank } n_0 \Leftrightarrow \forall n \in \mathbb{N}, \ n \ge n_0, \ \frac{u_{n+1}}{u_n} \le 1 \end{array}$

Property 4.

Let (u_n) be a sequence defined by $u_n = f(n)$ and let n_0 be an integer. If f is increasing (respectively decreasing) on $[n_0; +\infty[$ then (u_n) is increasing (respectively decreasing) starting rank n_0 .

Method to study variations of a sequence

According to the definition, and the previous property, there are therefore 3 methods :

- Study the sign of $u_{n+1} u_n$ (This method can be applied for all sequences, but it is sometimes simpler to use one of the two methods below).
- Compare the ratio $\frac{u_{n+1}}{u_n}$ to 1.

(This method can only be used for **strictly positive** sequences from a certain rank. It must therefore be specified when using this method).

— Study the variations of f, when the sign of f' is easily determined.

(This method can only be used for the sequences of the form $u_n = f(n)$.)

Example 4.

Study the monotony of the following sequences :

1.
$$\forall n \in \mathbb{N}, u_n = n^2 - 10n + 21$$

2. $\forall n \in \mathbb{N}^*, u_n = \sum_{k=1}^n \frac{1}{k^2}$
3. $\forall n \in \mathbb{N}, u_n = \frac{2^n}{n+1}$

Video : Correction example 4

Property 5. Monotony of geometric sequences

Let (u_n) be a geometric sequence of common ratio q and of first term u_0 . Variations of (u_n) :

	q < 0	0 < q < 1	q = 1	1 < q
$u_0 < 0$	not monotonic	increasing	$\operatorname{constant}$	decreasing
$u_0 > 0$	not monotonic	decreasing	constant	increasing

3 Convergence of a sequence

3.1 Finite Limit of a sequence

Definition 7.

Let $(u_n)_{n\in\mathbb{N}}$ be a real sequence, $l\in\mathbb{R}$. We say that the sequence $(u_n)_{n\in\mathbb{N}}$ converges to the value l and we denote : $\lim_{n\to+\infty} u_n = l$ ou $u_n \to l$ If and only if :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \ge N, |u_n - l| \le \varepsilon$$

Example 5.

Give an exemple of a sequence that converges to e.

 \checkmark Video : Correction example 5

Remark 3.

The way N depends on ε characterizes what is called the **convergence speed** of the sequence. For ε fixed, plus N is close to 0, the faster the rate of convergence.

Definition 8.

Let x_0 and a be real numbers. We say that a is an approximate value of x_0 up to ε if : $|x_0 - a| \leq \varepsilon$.

Remark 4.

Therefore $u_n \to l \Leftrightarrow$ for all $\varepsilon > 0$, u_n give an approximation of l starting a certain rank and to the precision ε .

The numerical series are therefore used to find approximate real values whose exact values can not be calculated.

Property 6.

If $u_n \xrightarrow{} l$ then $|u_n| \xrightarrow{} |l|$ $_{n \to +\infty} l$ then $u_n | \xrightarrow{} |l|$

Proposition 1. Any convergent sequence is bounded.

Video : optional proof

3.2 Infinite limit of a sequence

Definition 9.

Let $(u_n)_{n\in\mathbb{N}}$ be a real sequence. We say that $(u_n)_{n\in\mathbb{N}}$ converges to infinity $+\infty$ (respectively $-\infty$) and we denote $u_n \to +\infty$ (respectively $u_n \to -\infty$) if and only if : $\xrightarrow{n\to+\infty} +\infty$

 $\forall A \in \mathbb{R}, \exists N \in \mathbb{N}, \forall n \ge N, u_n \ge A$

(respectively $\forall A \in \mathbb{R}, \exists N \in \mathbb{N}, \forall n \ge N, u_n \le A$).

Definition 10.

Let $(u_n)_{n \in \mathbb{N}}$ be a real sequence. We say that $(u_n)_{n \in \mathbb{N}}$ is **divergent** if it is not convergent.

Example 6.

Give two examples of divergent sequences.

 \checkmark Video : Correction example 7

3.3 Properties on limits

3.3.1 Limits and operations

All limit tables for functions can be reused here.

3.3.2 Limits and inequality

Theorem 2. To the limit

Let $(u_n)_{n\in\mathbb{N}}$ and $(u'_n)_{n\in\mathbb{N}}$ be two real sequences converging to l and l'. We suppose that there exist a certain rank n_0 from which $\forall n \ge n_0, u_n \le u'_n$, then $l \le l'$.

Example 7.

Find two (u_n) and (v_n) sequences such that $u_n < v_n$ from a rank n_0 and such that (u_n) and (v_n) converge to the same limit L.

Video : Correction example 8

Theorem 3. Squeeze theorem

Let $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$, $(w_n)_{n\in\mathbb{N}}$ be real sequences and l a real number. We suppose that $u_n \to l_n$ and $w_n \to l$ and that starting a rank n_0 we have $\forall n \ge n_0, u_n \le v_n \le w_n$ then $v_n \to l_n \to +\infty$

Theorem 4. Comparing sequences

- 1. Let $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ be real sequences. We suppose that $: u_n \to +\infty$ and that starting a rank n_0 we have $\forall n \ge n_0, u_n \leqslant v_n$ then $v_n \to +\infty$ $n \to +\infty$
- 2. Let $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ be real sequences. We suppose that $: v_n \to -\infty$ and that starting a rank n_0 we have $\forall n \ge n_0, u_n \le v_n$ then $u_n \to -\infty$

Example 8.

— Show that $(u_n)_{n \in \mathbb{N}^*}$ defined by : $\forall n \ge 1, u_n = 1 + \frac{(-1)^n}{n^2 + 1}$ converges to 1.

— Show that $n! \xrightarrow[n \to +\infty]{} +\infty$

Video : Correction example 9

3.3.3 Limit of a sequence and continuous functions

Theorem 5.

If f is continuous in a, and if $\lim_{n \to +\infty} u_n = a$, then $\lim_{n \to +\infty} f(u_n) = f(a)$.

Example 9.

Determine the limit of (u_n) defined by $u_n = e^{\frac{(-1)^n}{n}}$

Video : Correction example 10

3.3.4 Limits of geometric sequences

Property 7.

Let $(u_n)_{n\in\mathbb{N}}$ be a geometric sequence of common ratio $q\neq 0$ with $u_0\neq 0$.

1. if |q| < 1 then $\underset{n \to +\infty}{u_n \to 0}$

- 2. if q = 1 then $u_n \xrightarrow[n \to +\infty]{} u_0$ (the sequence is constant)
- 3. if q > 1 then $u_n \rightarrow \begin{cases} +\infty \sin u_0 > 0 \\ -\infty \sin u_0 < 0 \end{cases}$
- 4. if $q \leq -1$ then (u_n) as no limits.

3.3.5**Convergence** of monotonic sequences

1. Let $(u_n)_{n\in\mathbb{N}}$ be an increasing sequence starting n_0 . If it is bounded from Theorem 6. above then : $\lim_{n \to +\infty} u_n = \sup \{u_n | n \in \mathbb{N}, n \ge n_0\}$

If not bounded from above then the sequence converges to $+\infty$

2. Let $(u_n)_{n\in\mathbb{N}}$ be an decreasing sequence starting n_0 . If it is bounded from below then : $\lim_{n \to +\infty} u_n = \inf \left\{ u_n | n \in \mathbb{N}, n \ge n_0 \right\}$

If not bounded from below then the sequence converges to $-\infty$

Example 10.

Let (u_n) be a sequence defined by $u_n = \sum_{k=1}^{k=n} \frac{1}{k^2}$. We admit that (u_n) converges to $\frac{\pi^2}{6}$.

1. Justify that $u_n \leq \frac{\pi^2}{6}$ for all $n \geq 1$.

2. Let
$$(v_n)$$
 be defined by $v_n = \sum_{k=1}^{k=n} \frac{1}{k^3}$. Study the convergence of (v_n) .

Video : Correction example 11

3.3.6 Adjacent sequences

Definition 11.

Let $(u_n)_{n\in\mathbb{N}}$ and $(v_n)_{n\in\mathbb{N}}$ be two real sequences. These suites are said to be **adjacent** if and only if the following two conditions are satisfied :

1. They are monotonous and of opposite variations.

2.
$$u_n - v_n \xrightarrow[n \to +\infty]{\rightarrow} 0$$

Theorem 7. Convergence

Let $(u_n)_{n\in\mathbb{N}}$ and $(v_n)_{n\in\mathbb{N}}$ be two real sequences. Then they are convergent and have the same limit. Moreover, their common limit is included for any n between u_n and v_n .

Example 11.

For all $n \ge 1$, we have : $u_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$ and $v_n = u_n + \frac{1}{n \cdot n!}$. Show that $(u_n)_{n \in \mathbb{N}}$ and $(v_n)_{n \in \mathbb{N}}$ are adjacent sequences.

Their common limit is the number e. We will demonstrate this next year.

 \checkmark Video : Correction example 12

3.3.7 Subsequences

Definition 12.

 (v_n) is a subsequence of (u_n) if there is a strictly increasing mapping φ from \mathbb{N} to \mathbb{N} so taht : $\forall n \in \mathbb{N}$ $v_n = u_{\varphi(n)}$

In practice, we will use the sequences extracted from even and odd indices, that is to say the subsequences : $(u_{2n})_{n \in \mathbb{N}}$ et $(u_{2n+1})_{n \in \mathbb{N}}$

Theorem 8.

Let $(u_n)_{n \in \mathbb{N}}$ be a real sequence. We suppose that $u_{2n} \to l$ et $u_{2n+1} \to l$ then $u_n \to l$ $n \to +\infty$ $n \to +\infty$

Example 12.

Study the convergence of $(u_n)_{n \in \mathbb{N}}$ defined by : $u_n = (-1)^n \sin\left(\frac{1}{n}\right)$

Theorem 9.

All subsequence of a convergent sequence converges to the same limit.

Remark 5.

We can use the contraposition of the previous theorem to prove that a (u_n) sequence is not convergent :

- Show a non convergent subsequence.
- or show two subsequences converging to different limits

Example 13.

Give the nature of (u_n) defined by $: u_n = (-1)^n$.

Video : Correction example 14

4 Linear recursive sequences of order 2 (optional)

Theorem 10. Linear recursive series of order 2

Let's consider the sequence $(u_n)_{n\in\mathbb{N}}$ defined by it's first two terms u_0 and u_1 and the relation :

$$\forall n \in \mathbb{N}, u_{n+2} = au_{n+1} + bu_n$$

a and b being real numbers.

We call **caracteristic equation**, the equation (EC) : $x^2 - ax - b = 0$. Let α and β be the solutions of this equation then :

— If α and β are real numbers ie $\Delta = a^2 + 4b > 0$, then there exist two real numbers A and B so that :

$$\forall n \in \mathbb{N}, u_n = A\alpha^n + B\beta^r$$

— if α and β are eaual ie $\Delta = a^2 + 4b = 0$, then there exist two real numbers A and B so that :

$$\forall n \in \mathbb{N}, u_n = (An + B)\alpha^n$$

— If α and β are complex conjugate, ie $\Delta = a^2 + 4b < 0$, they can be written : $\alpha = \rho e^{i\theta}$ and $\beta = \rho e^{-i\theta}$. then there exist two real numbers A and B so that :

$$\forall n \in \mathbb{N}, u_n = \rho^n \left(A \cos(n\theta) + B \sin(n\theta) \right)$$

In each case, the constants A and B are obtained by solving a system of two equations with two unknowns as a function of u_0 and u_1 .

Example 14.

The fibonacci sequence $(u_n)_{n \in \mathbb{N}}$ defined by $u_0 = u_1 = 1$ and

 $\forall n \in \mathbb{N}, u_{n+2} = u_{n+1} + u_n$

Give an expression of u_n as a function of n.

 \checkmark Video : Correction example 15

5 Recursive real sequences $u_{n+1} = f(u_n)$

5.1 Definition

Example 15.

- 1. Represent the function defined by $f(x) = 2\sqrt{2x-4}$ for $x \in [2; 6]$, and the ligne of equation y = x.
- 2. Discuss the existence of the sequence (u_n) defined by $u_{n+1} = f(u_n)$, using the graph, depending on the value of u_0 .
- 3. Let $I = [4; +\infty]$. Show that if $u_0 \in I$ then the sequence (u_n) is defined.

Video : Correction example 16

Property 8.

Let f be a real function defined on an interval I of \mathbb{R} . Let $a \in I$. The recursive sequence (u_n) defined by $u_0 = a$ and $\forall n \in \mathbb{N}$, $u_{n+1} = f(u_n)$ is defined if $f(I) \subset I$, and then $u_n \in I$ for all $n \in \mathbb{N}$.

Throughout the remainder of the paragraph, we consider :

- I an interval of \mathbb{R} .
- f a function so that $f(I) \subset I$.
- A sequence (u_n) defined by $u_{n+1} = f(u_n)$ and $u_0 \in I$.

5.2 Variations

Property 9.

If f is increasing on I, then (u_n) is monotonic :

— increasing if $f(u_0) \ge u_0$ i.e. if $u_1 \ge u_0$.

— decreasing if $f(u_0) \leq u_0$ i.e. if $u_1 \leq u_0$.

Example 16.

Prove the preceding theorem.

Video : Correction example 17

5.3 Convergence

Property 10.

If I is bounded and if f is increasing, then for all $u_0 \in I$, the sequence (u_n) is convergent.

Example 17.

Prove the preceding theorem.

Video : Correction example 18

Property 11.

If f is continuous on I and if (u_n) converges to $l \in I$, then f(l) = l i.e. l is an attractive fixed point f.

Example 18. Prove the preceding theorem.

Video : Correction example 19

Example 19.

Let $(u_n)_{n \in \mathbb{N}}$ be the sequence defined in 15, ie $u_0 = 6$ and $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$ with $f(x) = 2\sqrt{2x-4}$.

- 1. Justify the sequence $(u_n)_{n \in \mathbb{N}}$ is well defined.
- 2. Study the variations of (u_n) .
- 3. Using the different properties above, show that (u_n) converges and determine its limit.

Video : Correction example 20

Remark 6. Example : Let us look for a solution of the equation f(x) = 0 with $f(x) = x^4 + 3x + 1$.

We show that f is strictly increasing and continuous on [-1; 0], that f(-1) = -1 and f(0) = 1. According to the intermediate value theorem, there exists a unique real x_0 in [-1; 0] such that $f(x_0) = 0$.

We can also show that the following two sequences converge to x_0 :

- Method of Lagrange : $u_{n+1} = \frac{-1}{u_n^3 + 3}$ et $u_0 = -1$ - Method of Newton : $v_{n+1} = \frac{3v_n - 1}{4v_n^3 + 3}$ et $v_0 = 0$

To get an approximate value of x_0 to 10^{-15} , just calculate v_4 , then go to u_{12} . Newton's method is, in general, a method which converges much faster than the Lagrange method.

It is found that -0.337666765642802 is an approximate value of x_0 to 10^{-15} near.

6 Comparaison of sequences

6.0.1 Negligeable sequences

Definition 13.

Let $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ be two real sequences. We say that $(u_n)_{n\in\mathbb{N}}$ is negligeable in front of $(v_n)_{n\in\mathbb{N}}$ when $n \to +\infty$ if and only if :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \ge N, |u_n| \le \varepsilon |v_n|$$

We denote : $u_n = o(v_n)$ or We also say that u_n is infinitely small with respect to v_n and that v_n is infinitely large with respect to u_n when $n \to +\infty$.

Property 12.

If (v_n) is non-zero from a certain rank :

$$u_n = o(v_n) \Leftrightarrow \frac{u_n}{v_n} \mathop{\to}\limits_{n \to +\infty} 0$$

Example 20.

- 1. Show that $n! = o(n^n)$.
- 2. Is the sequence $(\frac{1}{n})$ negligeable in front of $(\frac{1}{n^2})$?
- 3. Is the sequence $(1, 1^n)$ negligeable in front of (n^{1000}) ?

Video : Correction example 21

6.0.2 Equivalent sequences

6.0.3 Definition

Definition 14.

Let $(u_n)_{n\in\mathbb{N}}$ and $(v_n)_{n\in\mathbb{N}}$ be real sequences We say that $(u_n)_{n\in\mathbb{N}}$ is equivalent to $(v_n)_{n\in\mathbb{N}}$ when $n \to +\infty$ if and only if $u_n - v_n = o(v_n)$. We denote $u_n \sim v_n$ or $u_n \sim v_n$.

We also say that u_n is an equivalent of v_n .

Thus, a simple characterization of equivalence when the terms of the $(v_n)_{n\in\mathbb{N}}$ are non-zero from a certain rank is :

$$u_n \underset{+\infty}{\sim} v_n \Leftrightarrow \frac{u_n}{v_n} \underset{n \to +\infty}{\to} 1$$

Remark 7. Careful

Do not confuse properties $u_n \underset{+\infty}{\sim} v_n$ and $u_n - v_n \to 0$. There is no relationship of implication between them. Indeed :

- Take
$$u_n = \frac{1}{n}$$
 and $v_n = \frac{1}{n^2}$ then $u_n - v_n \xrightarrow[n \to +\infty]{} 0$ but $\frac{u_n}{v_n} \xrightarrow[n \to +\infty]{} +\infty \neq 1 \Rightarrow u_n \xrightarrow[+\infty]{} v_n$

— Take $u_n = n^2 + n$ and $v_n = n^2$ then $\frac{u_n}{v_n} = 1 + \frac{1}{n} \underset{n \to +\infty}{\rightarrow} 1 \Rightarrow u_n \sim v_n$. yet $u_n - v_n = n$ does not cenverge to 0!

6.0.4 Research of equivalents

For a (u_n) defined by $u_n = f(n)$, it is possible, where possible, to find an equivalent of u_n using a limited development of f in $+\infty$.

Example 21.

Give an equivalent to $u_n = n \ln \left(\sqrt{\frac{n+1}{n-1}} \right)$

 $\mathbf{\overset{\hspace{0.1em} \blacksquare}{=}}$ Video : Correction example 22

7 Exercises

Exercise 1.

Determine the variations and limits of the following sequences :

- 1. $u_n = e^n 5n$
- 2. $u_{n+1} = -5u_n$ and $u_0 = 3$.
- 3. $u_{n+1} = 0, 5u_n$ and $u_0 = -3$
- 4. $u_{n+1} = -0, 5u_n$ and $u_0 = -5$.

Exercise 2.

Let (u_n) , (v_n) and (w_n) be real sequences verifying :

For all integer $n > 0 : u_n \leq v_n \leq w_n$.

Check the affirmations that are true and justify your choices.

- 1. If the sequence (v_n) converges to $-\infty$, then :
 - \Box the sequence (w_n) converges to $-\infty$.
 - \Box the sequence (u_n) is bounded from above .
 - \Box the sequence (u_n) converges to $-\infty$.
 - \Box the sequence (w_n) has no limits.
- 2. If $u_n \ge 1$, $w_n = 2u_n$ and $\lim u_n = l \in \mathbb{R}$ then
 - $\Box \lim v_n = l.$
 - \Box the sequence (w_n) converges to $+\infty$.
 - $\Box \lim (w_n u_n) = l.$
 - \square We can not say whether the sequence (v_n) has a limit or not.

3. If $\lim u_n = -2$ and $\lim w_n = 2$, then :

- \Box the sequence (v_n) is bounded from above
- \Box lim $(v_n) = 0$
- \Box the sequence (v_n) has no limits
- \square We can not say whether the sequence (v_n) has a limit or not.

4. Si
$$u_n = \frac{2n^2 - 1}{n^2}$$
 et $w_n = \frac{2n^2 + 3}{n^2}$ alors :
 $\Box \lim_{n \to \infty} (w_n) = 0$

- \Box lim $(v_n) = 2$
- \Box lim $(u_n) = 2$
- \Box the sequence (v_n) has no limits

Exercise 3.

Calculate the sum of the first n odd numbers.

Exercise 4.

We call arithmetic-geometric sequence, any sequence $(u_n)_{n\in\mathbb{N}}$ defined by its first term u_0 and by a relation of type : $\forall n \in \mathbb{N}, u_{n+1} = au_n + b$ where a and b are real numbers.

- 1. Express u_n as a function of n when a = 1.
- 2. Suppose $a \neq 1$
 - (a) Verify that the equation $\ell = a\ell + b$ admits a unique solution l.
 - (b) We set $w_n = u_n \ell$. Verify that $(w_n)_{n \in \mathbb{N}}$ is a geometric sequence.
 - (c) Express u_n as a function of a, b, n, u_0 .
 - (d) Determine the value of $\sum_{k=0}^{n} u_k$ as a function of a, b, n, u_0 .

Exercise 5.

Conjecture the u_n value as a function of n for the following $(u_n)_{n \in \mathbb{N}}$ and then prove by induction your conjectures $u_0 \in \mathbb{R}$ unless otherwise stated :

1. $u_1 = 5$ and $\forall n \in \mathbb{N}^*, u_{n+1} = \frac{n}{2}u_n$ 2. $\forall n \in \mathbb{N}, u_{n+1} = e^{n-2}u_n$ 3. $u_1 = 1$ and $\forall n \in \mathbb{N}^*, u_{n+1} = -\frac{n}{n+1}u_n$ 4. $\forall n \in \mathbb{N}, u_{n+1} = 2u_n + 2^n$ 5. $\forall n \in \mathbb{N}, u_{n+1} = (u_n)^2$

Exercise 6.

Study the convergence and monotony of (v_n) defined by : $v_n = \cos\left(n\frac{\pi}{4}\right)$.

Exercise 7.

- 1. Show that for all k > 0 : $\frac{1}{k(k+1)} = \frac{1}{k} \frac{1}{k+1}$
- 2. Deduce that $u_n = \sum_{k=1}^n \frac{1}{k(k+1)}$ is convergent.
- 3. we set for $n \in \mathbb{N}^*, v_n = \sum_{k=1}^n \frac{1}{k^2}$
 - Show that $v_n \leq 1 + u_{n-1}$
 - Deduce that the sequence (v_n) is convergent.

Exercise 8.

Let $(u_n)_{n \in \mathbb{N}}$ be a sequence defined by it's first term $u_0 = 2$ and the inductive relation : $\forall n \in \mathbb{N}, u_{n+1} = \frac{1}{2} \left(u_n + \frac{3}{u_n} \right)$

- 1. Show that $(u_n)_{n \in \mathbb{N}}$ exists.
- 2. Show that $(u_n)_{n\in\mathbb{N}}$ is bounded from below by $\sqrt{3}$
- 3. Study the variations of $(u_n)_{n\in\mathbb{N}}$ then show that it converges to $\sqrt{3}$

Exercise 9. Let $(u_n)_{n\in\mathbb{N}}$ be defined by $u_0 = 1$ and $\forall n \in \mathbb{N}, u_{n+1} = \frac{1}{4}u_n^2 + 1$

- 1. Show that the sequence $(u_n)_{n \in \mathbb{N}}$ is increasing.
- 2. Prove by induction that $(u_n)_{n \in \mathbb{N}}$ is bounded from above. Conclude.
- 3. Determine $\lim_{n \to +\infty} u_n$.
- 4. What happens if we take $u_0 = 3$?

Exercise 10. We set $S_n = \sum_{k=1}^n \frac{(-1)^k}{k}$, $u_n = S_{2n}$, $v_n = S_{2n+1}$. Show that $(u_n)_{n\in\mathbb{N}}$ and $(v_n)_{n\in\mathbb{N}}$ are adjacent. Deduce the convergence of the sequence $(S_n)_{n \in \mathbb{N}}$

Exercise 11.

Give an equivalent of the sequences below as $\frac{k}{n^{\alpha}}$:

- 1. $u_n = (1 + \frac{a}{n})^n$ 2. $u_n = \frac{n^2 + 3}{n^5 + 1}$ 3. $u_n = \frac{\sin(n) + n}{\sqrt{n} + \cos(n)}$
- 4. Is the following statement true or false : $\frac{\ln(n)}{n^3} \sim \frac{1}{n^3}$ because $\ln(n)$ is negligeable in front of n^3 .

Exercise 12.

1. Show that $u_n = \frac{e^{-n} + 2}{n^2 + 1}$ is negligeable in front of $\frac{k}{n^{\alpha}}$ and determine k and α . 2. (a) Do we have $\frac{\sin^2(n)}{n^2} = o(\frac{1}{n^3})$? (b) and $\frac{\sin^2(n)}{n^2} = o(\frac{1}{n^2})$? 3. Show that $\frac{\ln(n)}{n^2} = o(\frac{1}{n^{\frac{3}{2}}})$

Exercise 13.

It is proposed to study the evolution of a population of ladybugs using a model using the numerical function f defined by f(x) = kx(1-x), k being A parameter that depends on the environment $(k \in \mathbb{R}^{+*})$. In the chosen model, it is assumed that the number of ladybugs remains less than one million. The number of ladybugs, expressed in millions of individuals, is

approximated for the year n by a real number u_n , with u_n between 0 and 1. For example, if for year zero There are 300 000 ladybugs, one will take $u_0 = 0.3$. It is assumed that the evolution from one year to the next obeys the relation $u_{n+1} = f(u_n)$, f being the function defined above. The aim of the exercise is to study the behavior of the sequence (u_n) for different values of the initial population u_0 and the parameter k. We will study the variations of f and the sign of $f(u_0) - u_0$ by distinguishing the cases where $k \in [0, 1]$ and $k \in [1, 2]$.