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Sequence

Objectives

� Know general concepts and de�nitions

� Compute sequence limits.

� Know general theorems on limits.

� Be able to study recursive sequences.

Link to example �le in pdf : sequence example.pdf

Link to example �le in pdf : sequence exercises.pdf

1 De�nitions

1.1 Sequences

De�nition 1.

A sequence of real numbers is a collection (un)n∈N of real numbers indexed in N. We say that
un is the member or term of the sequence (un)n∈N. In other words, to give a real sequence is

to give an application :
N → R
n 7→ un

Remark 1.

For convenience, the general term un is sometimes de�ned only from a certain rank n0. We then
write the sequence (un)n⩾n0

. Throughout this chapter, everything that is de�ned from 0 is easy
to transpose for n0.

De�nition 2.

Let P be a property relating to the real sequences. We say that a (un)n∈N satis�es P from a

certain rank if and only if there is a natural number n0 such that the (un)n⩾n0
satis�es the P

property.

The sequences studied in this chapter are de�ned in two di�erent ways :

1. Each term is de�ned from the preceding terms.
Example : for n ⩾ 0, un+1 =

√
un + 2 and u0 = 1

In paragraph 5, the follow-up to un+1 = f (un).

2. Each term is de�ned from its rank.

Examples : un = n2 + ln(n+ 1) or un =
n∑

k=1

1

k

Example 1. Compute the �rst 3 terms of those sequences.

Video : Correction example 1
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1.2 Reasoning by induction

Let n be an integer and P (n) a property. If :

� Initialization or base case : There is an integer n0 such that P (n0) is true.

� Inheritance or inductive step : for every integer m ⩾ n0, P (m) true implies that P (m+1)
is true.

Then P (n) is true for all n ⩾ n0.

Example 2. Show by induction that :
k=n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6

Video : Correction example 2

1.3 Arithmetic sequences and geometric sequences.

1.3.1 Arithmetic sequences

De�nition 3. Let r ∈ R. An arithmetic sequence of common di�erence r is a sequence
(un)n∈N given by the �rst term up and the inductive formula :

∀n ∈ N, un+1 = un + r

We then have :
∀n ∈ N, un = up + (n− p)r

Property 1. Sum of consecutive terms

The sum of the consecutive terms of an arithmetic sequence is equal to

number of terms
1st term + last term

2

In particular :
n∑

k=1

k = 1 + 2 + ...+ n =
n(n+ 1)

2

1.3.2 Geometric sequences

De�nition 4. Let q ∈ R∗. A geometric sequence of common ratio q is a sequence (un)n∈N
given by the �rst term up and the inductive formula :

∀n ∈ N, un+1 = qun

We then have :
∀n ∈ N, un = upq

n−p

Property 2. Sum of consecutive terms

The sum of the consecutive terms of a geometric sequence whose common ratio is di�erent from
1 is equal to

1st term
1− commonrationumber of terms

1− commonratio

In particular : if q ̸= 1,
n∑

k=0

qk= 1 + q + ...+ qn =
1− qn+1

1− q

2
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1.4 bounded sequences

De�nition 5.

Let (un)n∈N be a real sequence.

1. The sequence (un)n∈N is said to be bounded from above if and only if there exist a real
number M so that :

∀n ∈ N, un ⩽ M

2. The sequence (un)n∈N is said to be bounded from below if and only if there exist a real
number m so that :

∀n ∈ N, un ⩾ m

3. The sequence (un)n∈N is said to be bounded if it is bounded from above and below

Example 3. Are the following sequences bounded ?

1. un =
1

n
, n > 0

2. un =
n2 + 1

n+ 3

3. un = (−1)n cos(n).

Video : Correction example 3

Remark 2.

The sequence (un)n∈N is bounded if and only if (|un|)n∈N is bounded from above ie there exist
M ⩾ 0 so that :

∀n ∈ N, |un| ⩽ M

This widely used property also has the merit of being able to be used with complex sequences.

2 Variations

De�nition 6.

Let (un)n∈N a real sequence.

1. We say that (un)n∈N is increasing (respectively strictly increasing) from the rank n0

if and only if we have : ∀n ⩾ n0, un ⩽ un+1 (respectively ∀n ⩾ n0, un < un+1)

2. We say that (un)n∈N is decreasing (respectively strictly decreasing) from the rank n0

if and only if we have : ∀n ⩾ n0, un ⩾ un+1 (respectively ∀n ⩾ n0, un > un+1)

3. We say that (un)n∈N is monotonic (respectively strictement monotonic) from the
rank n0 if and only if it is decreasing or increasing (respectively strictly decreasing or
increasing)from the rank n0.

4. We say that (un)n∈N is constant if and only if we have : ∀n ∈ N, un = un+1. We say that
(un)n∈N is stationary if and only if it is constant starting from a certain rank.

Property 3.

When (un)n∈N is a sequence with strictly positive terms starint a certain rank n0, It may be
useful to use the following equivalent form of the de�nition :

3
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� (un)n∈N Is increasing from rank n0 ⇔ ∀n ∈ N, n ⩾ n0,
un+1

un

⩾ 1

� (un)n∈N Is decreasing from rank n0 ⇔ ∀n ∈ N, n ⩾ n0,
un+1

un

⩽ 1

Property 4.

Let (un) be a sequence de�ned by un = f(n) and let n0 be an integer. If f is increasing
(respectively decreasing) on [n0; +∞[ then (un) is increasing (respectively decreasing) starting
rank n0.

Method to study variations of a sequence

According to the de�nition, and the previous property, there are therefore 3 methods :

� Study the sign of un+1 − un

(This method can be applied for all sequences, but it is sometimes simpler to use one of
the two methods below).

� Compare the ratio
un+1

un

to 1.

(This method can only be used for strictly positive sequences from a certain rank. It
must therefore be speci�ed when using this method).

� Study the variations of f , when the sign of f ′ is easily determined.

(This method can only be used for the sequences of the form un = f(n).)

Example 4.

Study the monotony of the following sequences :

1. ∀n ∈ N, un = n2 − 10n+ 21

2. ∀n ∈ N∗, un =
n∑

k=1

1

k2

3. ∀n ∈ N, un =
2n

n+ 1

Video : Correction example 4

Property 5. Monotony of geometric sequences

Let (un) be a geometric sequence of common ratio q and of �rst term u0.
Variations of (un) :

q < 0 0 < q < 1 q = 1 1 < q
u0 < 0 not monotonic increasing constant decreasing
u0 > 0 not monotonic decreasing constant increasing

3 Convergence of a sequence

3.1 Finite Limit of a sequence

De�nition 7.

Let (un)n∈N be a real sequence, l ∈ R. We say that the sequence (un)n∈N converges to the
value l and we denote : lim

n→+∞
un = l ou un → l

n→+∞
If and only if :

∀ε > 0,∃N ∈ N, ∀n ⩾ N, |un − l| ⩽ ε

4
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Example 5.

Give an exemple of a sequence that converges to e.

Video : Correction example 5

Remark 3.

The way N depends on ε characterizes what is called the convergence speed of the sequence.
For ε �xed, plus N is close to 0, the faster the rate of convergence.

De�nition 8.

Let x0 and a be real numbers. We say that a is an approximate value of x0 up to ε if :
|x0 − a| ⩽ ε.

Remark 4.

Therefore un → l
n→+∞

⇔ for all ε > 0, un give an approximation of l starting a certain rank and to

the precision ε.
The numerical series are therefore used to �nd approximate real values whose exact values

can not be calculated.

Property 6.

If un → l
n→+∞

then |un| → |l|
n→+∞

Proposition 1. Any convergent sequence is bounded.

Video : optional proof

3.2 In�nite limit of a sequence

De�nition 9.

Let (un)n∈N be a real sequence. We say that (un)n∈N converges to in�nity +∞ (respectively
−∞) and we denote un → +∞

n→+∞
(respectively un → −∞

n→+∞
) if and only if :

∀A ∈ R,∃N ∈ N,∀n ⩾ N, un ⩾ A

(respectively ∀A ∈ R,∃N ∈ N,∀n ⩾ N, un ⩽ A ).

De�nition 10.

Let (un)n∈N be a real sequence. We say that (un)n∈N is divergent if it is not convergent.

Example 6.

Give two examples of divergent sequences.

Video : Correction example 7

3.3 Properties on limits

3.3.1 Limits and operations

All limit tables for functions can be reused here.
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3.3.2 Limits and inequality

Theorem 2. To the limit

Let (un)n∈N and (u′
n)n∈N be two real sequences converging to l and l′. We suppose that there

exist a certain rank n0 from which ∀n ⩾ n0, un ⩽ u′
n, then l ⩽ l′.

Example 7.

Find two (un) and (vn) sequences such that un < vn from a rank n0 and such that (un) and
(vn) converge to the same limitL.

Video : Correction example 8

Theorem 3. Squeeze theorem

Let (un)n∈N, (vn)n∈N, (wn)n∈N be real sequences and l a real number. We suppose that un → l
n→+∞

and wn → l
n→+∞

and that starting a rank n0 we have ∀n ⩾ n0, un ⩽ vn ⩽ wn then vn → l
n→+∞

Theorem 4. Comparing sequences

1. Let (un)n∈N et (vn)n∈N be real sequences. We suppose that : un → +∞
n→+∞

and that starting

a rank n0 we have ∀n ⩾ n0, un ⩽ vn then vn → +∞
n→+∞

2. Let (un)n∈N et (vn)n∈N be real sequences. We suppose that : vn → −∞
n→+∞

and that starting

a rank n0 we have ∀n ⩾ n0, un ⩽ vn then un → −∞
n→+∞

Example 8.

� Show that (un)n∈N∗ de�ned by : ∀n ⩾ 1, un = 1 +
(−1)n

n2 + 1
converges to 1.

� Show that n! → +∞
n→+∞

Video : Correction example 9

3.3.3 Limit of a sequence and continuous functions

Theorem 5.

If f is continuous in a, and if lim
n→+∞

un = a, then lim
n→+∞

f (un) = f (a).

Example 9.

Determine the limit of (un) de�ned by un = e
(−1)n

n

Video : Correction example 10

3.3.4 Limits of geometric sequences

Property 7.

Let (un)n∈N be a geometric sequence of common ratio q ̸= 0 with u0 ̸= 0.

1. if |q| < 1 then un → 0
n→+∞

6
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2. if q = 1 then un → u0
n→+∞

(the sequence is constant)

3. if q > 1 then un →
n→+∞

{
+∞ si u0 > 0
−∞ si u0 < 0

4. if q ⩽ −1 then (un) as no limits.

3.3.5 Convergence of monotonic sequences

Theorem 6. 1. Let (un)n∈N be an increasing sequence starting n0. If it is bounded from
above then : lim

n→+∞
un = sup {un|n ∈ N, n ⩾ n0}

If not bounded from above then the sequence converges to +∞
2. Let (un)n∈N be an decreasing sequence starting n0. If it is bounded from below then :

lim
n→+∞

un = inf {un|n ∈ N, n ⩾ n0}

If not bounded from below then the sequence converges to −∞

Example 10.

Let (un) be a sequence de�ned by un =
k=n∑
k=1

1

k2
. We admit that (un) converges to

π2

6
.

1. Justify that un ⩽
π2

6
for all n ⩾ 1.

2. Let (vn) be de�ned by vn =
k=n∑
k=1

1

k3
. Study the convergence of (vn).

Video : Correction example 11

3.3.6 Adjacent sequences

De�nition 11.

Let (un)n∈N and (vn)n∈N be two real sequences. These suites are said to be adjacent if and
only if the following two conditions are satis�ed :

1. They are monotonous and of opposite variations.

2. un − vn →
n→+∞

0

Theorem 7. Convergence

Let (un)n∈N and (vn)n∈N be two real sequences. Then they are convergent and have the same
limit. Moreover, their common limit is included for any n between un and vn.

Example 11.

For all n ⩾ 1, we have : un = 1 +
1

1!
+

1

2!
+ · · ·+ 1

n!
and vn = un +

1

n.n!
.

Show that (un)n∈N and (vn)n∈N are adjacent sequences.
Their common limit is the number e. We will demonstrate this next year.

Video : Correction example 12
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3.3.7 Subsequences

De�nition 12.

(vn) is a subsequence of (un) if there is a strictly increasing mapping φ from N to N so taht :
∀n ∈ N vn = uφ(n)

In practice, we will use the sequences extracted from even and odd indices, that is to say
the subsequences : (u2n)n∈N et (u2n+1)n∈N

Theorem 8.

Let (un)n∈N be a real sequence. We supose that u2n → l
n→+∞

et u2n+1 → l
n→+∞

then un → l
n→+∞

Example 12.

Study the convergence of (un)n∈N de�ned by : un = (−1)n sin

(
1

n

)
Video : Correction example 13

Theorem 9.

All subsequence of a convergent sequence converges to the same limit.

Remark 5.

We can use the contraposition of the previous theorem to prove that a (un) sequence is not
convergent :

� Show a non convergent subsequence.

� or show two subsequences converging to di�erent limits

Example 13.

Give the nature of (un) de�ned by : un = (−1)n.

Video : Correction example 14

4 Linear recursive sequences of order 2 (optional)

Theorem 10. Linear recursive series of order 2

Let's consider the sequence (un)n∈N de�ned by it's �rst two terms u0 and u1 and the relation :

∀n ∈ N, un+2 = aun+1 + bun

a and b being real numbers.
We call caracteristic equation, the equation (EC) : x2 − ax− b = 0. Let α and β be the

solutions of this equation then :

� If α and β are real numbers ie ∆ = a2 +4b > 0, then there exist two real numbers A and
B so that :

∀n ∈ N, un = Aαn +Bβn

� if α and β are eaual ie ∆ = a2 + 4b = 0, then there exist two real numbers A and B so
that :

∀n ∈ N, un = (An+B)αn

8
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� If α and β are complex conjugate, ie ∆ = a2 +4b < 0, they can be written : α = ρeiθ and
β = ρe−iθ. then there exist two real numbers A and B so that :

∀n ∈ N, un = ρn (A cos(nθ) +B sin(nθ))

In each case, the constants A and B are obtained by solving a system of two equations with
two unknowns as a function of u0 and u1.

Example 14.

The �bonacci sequence (un)n∈N de�ned by u0 = u1 = 1 and

∀n ∈ N, un+2 = un+1 + un

Give an expression of un as a function of n.

Video : Correction example 15

5 Recursive real sequences un+1 = f (un)

5.1 De�nition

Example 15.

1. Represent the function de�ned by f(x) = 2
√
2x− 4 for x ∈ [2; 6], and the ligne of equation

y = x.

2. Discuss the existence of the sequence (un) de�ned by un+1 = f(un), using the graph,
depending on the value of u0.

3. Let I = [4;+∞[. Show that if u0 ∈ I then the sequence (un) is de�ned.

Video : Correction example 16

Property 8.

Let f be a real function de�ned on an interval I of R. Let a ∈ I. The recursive sequence (un)
de�ned by u0 = a and ∀n ∈ N, un+1 = f (un) is de�ned if f (I) ⊂ I, and then un ∈ I for all
n ∈ N.

Throughout the remainder of the paragraph, we consider :

� I an interval of R.
� f a function so that f(I) ⊂ I.

� A sequence (un) de�ned by un+1 = f(un) and u0 ∈ I.

5.2 Variations

Property 9.

If f is increasing on I, then (un) is monotonic :

� increasing if f (u0) ⩾ u0 i.e. if u1 ⩾ u0.

9
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� decreasing if f (u0) ⩽ u0 i.e. if u1 ⩽ u0.

Example 16.

Prove the preceding theorem.

Video : Correction example 17

5.3 Convergence

Property 10.

If I is bounded and if f is increasing, then for all u0 ∈ I, the sequence (un) is convergent.

Example 17.

Prove the preceding theorem.

Video : Correction example 18

Property 11.

If f is continuous on I and if (un) converges to l ∈ I, then f (l) = l i.e. l is an attractive �xed
point f .

Example 18.

Prove the preceding theorem.

Video : Correction example 19

Example 19.

Let (un)n∈N be the sequence de�ned in 15, ie u0 = 6 and ∀n ∈ N, un+1 = f(un) with f(x) =

2
√
2x− 4.

1. Justi�y the sequence (un)n∈N is well de�ned.

2. Study the variations of (un).

3. Using the di�erent properties above, show that (un) converges and determine its limit.

Video : Correction example 20

Remark 6. Example : Let us look for a solution of the equation f(x) = 0 with f(x) =
x4 + 3x+ 1.

We show that f is strictly increasing and continuous on [-1 ; 0], that f(−1) = −1 and
f(0) = 1. According to the intermediate value theorem, there exists a unique real x0 in]− 1; 0[
such that f(x0) = 0.

We can also show that the following two sequences converge to x0 :

� Method of Lagrange : un+1 =
−1

u3
n + 3

et u0 = −1

� Method of Newton : vn+1 =
3vn − 1

4v3n + 3
et v0 = 0

To get an approximate value of x0 to 10−15, just calculate v4, then go to u12. Newton's
method is, in general, a method which converges much faster than the Lagrange method.

It is found that -0.337666765642802 is an approximate value of x0 to 10−15 near.

10
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6 Comparaison of sequences

6.0.1 Negligeable sequences

De�nition 13.

Let (un)n∈N et (vn)n∈N be two real sequences.We say that (un)n∈N is negligeable in front of
(vn)n∈N when n → +∞ if and only if :

∀ε > 0,∃N ∈ N,∀n ⩾ N, |un| ⩽ ε|vn|

We denote : un =
n→+∞

o (vn) or We also say that un is in�nitely small with respect to vn and

that vn is in�nitely large with respect to un when n → +∞.

Property 12.

If (vn) is non-zero from a certain rank :

un = o(vn) ⇔
un

vn
→ 0
n→+∞

Example 20.

1. Show that n! = o(nn).

2. Is the sequence (
1

n
) negligeable in front of (

1

n2
) ?

3. Is the sequence (1, 1n) negligeable in front of (n1000) ?

Video : Correction example 21

6.0.2 Equivalent sequences

6.0.3 De�nition

De�nition 14.

Let (un)n∈N and (vn)n∈N be real sequences We say that (un)n∈N is equivalent to (vn)n∈N when
n → +∞ if and only if un − vn = o(vn). We denote un ∼

+∞
vn or un ∼ vn.

We also say that un is an equivalent of vn.
Thus, a simple characterization of equivalence when the terms of the (vn)n∈N are non-zero

from a certain rank is :
un ∼

+∞
vn ⇔ un

vn
→

n→+∞
1

Remark 7. Careful

Do not confuse properties un ∼
+∞

vn and un − vn → 0. There is no relationship of implication

between them. Indeed :

� Take un =
1

n
and vn =

1

n2
then un − vn →

n→+∞
0 but

un

vn
→

n→+∞
+∞ ≠ 1 ⇒ un ≁

+∞
vn

� Take un = n2 + n and vn = n2 then
un

vn
= 1+

1

n
→

n→+∞
1 ⇒ un ∼ vn. yet un − vn = n does

not cenverge to 0 !

11
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6.0.4 Research of equivalents

For a (un) de�ned by un = f(n), it is possible, where possible, to �nd an equivalent of un

using a limited development of f in +∞.

Example 21.

Give an equivalent to un = n ln

(√
n+ 1

n− 1

)

Video : Correction example 22

7 Exercises

Exercise 1.

Determine the variations and limits of the following sequences :

1. un = en − 5n

2. un+1 = −5un and u0 = 3.

3. un+1 = 0, 5un and u0 = −3

4. un+1 = −0, 5un and u0 = −5.

Exercise 2.

Let (un), (vn) and (wn) be real sequences verifying :
For all integer n > 0 : un ⩽ vn ⩽ wn .
Check the a�rmations that are true and justify your choices.

1. If the sequence (vn) converges to −∞, then :

□ the sequence (wn) converges to −∞.

□ the sequence (un) is bounded from above .

□ the sequence (un) converges to −∞.

□ the sequence (wn) has no limits.

2. If un ⩾ 1, wn = 2un and limun = l ∈ R then

□ lim vn = l.

□ the sequence (wn) converges to +∞.

□ lim (wn − un) = l.

□ We can not say whether the sequence (vn) has a limit or not.

3. If lim un = -2 and lim wn = 2, then :

□ the sequence (vn) is bounded from above

□ lim (vn) =0

□ the sequence (vn) has no limits

□ We can not say whether the sequence (vn) has a limit or not.

4. Si un =
2n2 − 1

n2
et wn =

2n2 + 3

n2
alors :

□ lim (wn)=0

12
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□ lim (vn) =2

□ lim (un) = 2

□ the sequence (vn) has no limits

Exercise 3.

Calculate the sum of the �rst n odd numbers.

Exercise 4.

We call arithmetic-geometric sequence, any sequence (un)n∈N de�ned by its �rst term u0 and
by a relation of type : ∀n ∈ N, un+1 = aun + b where a and b are real numbers.

1. Express un as a function of n when a = 1.

2. Suppose a ̸= 1

(a) Verify that the equation ℓ = aℓ+ b admits a unique solution l.

(b) We set wn = un − ℓ. Verify that (wn)n∈N is a geometric sequence.

(c) Express un as a function of a, b, n, u0.

(d) Determine the value of
n∑

k=0

uk as a function of a, b, n, u0.

Exercise 5.

Conjecture the un value as a function of n for the following (un)n∈N and then prove by induction
your conjectures u0 ∈ R unless otherwise stated :

1. u1 = 5 and ∀n ∈ N∗, un+1 =
n

2
un

2. ∀n ∈ N, un+1 = en−2un

3. u1 = 1 and ∀n ∈ N∗, un+1 = − n

n+ 1
un

4. ∀n ∈ N, un+1 = 2un + 2n

5. ∀n ∈ N, un+1 = (un)
2

Exercise 6.

Study the convergence and monotony of (vn) de�ned by : vn = cos
(
n
π

4

)
.

Exercise 7.

1. Show that for all k > 0 :
1

k(k + 1)
=

1

k
− 1

k + 1

2. Deduce that un =
n∑

k=1

1

k(k + 1)
is convergent.

3. we set for n ∈ N∗, vn =
n∑

k=1

1

k2

� Show that vn ⩽ 1 + un−1

� Deduce that the sequence (vn) is convergent.

Exercise 8.

Let (un)n∈N be a sequence de�ned by it's �rst term u0 = 2 and the inductive relation : ∀n ∈

N, un+1 =
1

2

(
un +

3

un

)
13
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1. Show that (un)n∈N exists.

2. Show that (un)n∈N is bounded from below by
√
3

3. Study the variations of (un)n∈N then show that it converges to
√
3

Exercise 9. Let (un)n∈N be de�ned by u0 = 1 and : ∀n ∈ N, un+1 =
1

4
u2
n + 1

1. Show that the sequence (un)n∈N is increasing.

2. Prove by induction that (un)n∈N is bounded from above. Conclude.

3. Determine lim
n→+∞

un.

4. What happens if we take u0 = 3 ?

Exercise 10.

We set Sn =
n∑

k=1

(−1)k

k
, un = S2n, vn = S2n+1.

Show that (un)n∈N and (vn)n∈N are adjacent.
Deduce the convergence of the sequence (Sn)n∈N

Exercise 11.

Give an equivalent of the sequences below as
k

nα
:

1. un = (1 +
a

n
)n

2. un =
n2 + 3

n5 + 1

3. un =
sin(n) + n√
n+ cos(n)

4. Is the following statement true or false :
ln(n)

n3
∼ 1

n3
because ln(n) is negligeable in front

of n3.

Exercise 12.

1. Show that un =
e−n + 2

n2 + 1
is negligeable in front of

k

nα
and determine k and α.

2. (a) Do we have
sin2(n)

n2
= o(

1

n3
) ?

(b) and
sin2(n)

n2
= o(

1

n2
) ?

3. Show that
ln(n)

n2
) = o(

1

n
3
2

)

Exercise 13.

It is proposed to study the evolution of a population of ladybugs using a model using the
numerical function f de�ned by f(x) = kx(1 − x), k being A parameter that depends on
the environment (k ∈ R+∗). In the chosen model, it is assumed that the number of ladybugs
remains less than one million. The number of ladybugs, expressed in millions of individuals, is

14
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approximated for the year n by a real number un, with un between 0 and 1. For example, if for
year zero There are 300 000 ladybugs, one will take u0 = 0.3. It is assumed that the evolution
from one year to the next obeys the relation un+1 = f(un), f being the function de�ned above.
The aim of the exercise is to study the behavior of the sequence (un) for di�erent values of the
initial population u0 and the parameter k. We will study the variations of f and the sign of
f(u0)− u0 by distinguishing the cases where k ∈]0, 1] and k ∈ [1, 2].

15
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