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COMPARAISON LOCALE DES FONCTIONS

Objectifs

� Connaître les développements limités usuels.

� Savoir calculer les développements limités par di�érentes tech-

niques.

� Savoir quand appliquer la notion de développements limités.

Dans tout ce chapitre, I représente un intervalle quelconque de R. F(I,R) représente l'ensemble
des fonctions de I dans R.

1 Fonctions négligeables

Dé�nition 1.

Soit I un intervalle de R et soit a un réel. a ∈ R ou bien a est une borne de I. Soient f et g deux
fonctions de F(I,R). On dit que f est négligeable devant g au voisinage de a où a ∈ [−∞,+∞],
si et seulement si :

1. Cas a ∈ R : ∀ε > 0,∃α > 0,∀x ∈ I, |x− a| ⩽ α ⇒ |f(x)| ⩽ ε|g(x)|
2. Cas a = +∞ : ∀ε > 0,∃A ∈ R,∀x ∈ I, x ⩾ A ⇒ |f(x)| ⩽ ε|g(x)|
3. Cas a = −∞ : ∀ε > 0, ∃A ∈ R,∀x ∈ I, x ⩽ A ⇒ |f(x)| ⩽ ε|g(x)|

On note f(x) = o (g(x))
x→a

ou, s'il n'y a pas de confusion possible, f = o(g). On dit aussi que f(x)

est in�niment petit par rapport à g(x) au voisinage de a.

Proposition 1 (Caractérisation).
Les propositions suivantes sont équivalentes :

1. f(x) = o (g(x))
x→a

2. Si g ̸= 0 au voisinage de a,
f(x)

g(x)
→ 0
x→a

3. Il existe une fonction ε telle que f(x) = g(x)ε(x) avec ε(x)→ 0
x→a

au voisinage de a.

Exemple 1.

1. Déterminer tous les entiers n tels que
x3

1 + x2
= o(xn) au voisinage de 0.

2. Soit f une fonction telle que f(x) = o(x3) au voisinage de 0. Déterminer les entiers n

tels que
f(x)

x
= o(xn).
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Les propriétés sur la notion de négligeabilité sont les mêmes que celles vues dans le chapitre
sur les suites. En particulier, on retrouve le théorème des croissances comparées :
en +∞ : xα = o(xβ) ssi α < β, xα = o(ex), lnx = o(xβ)

en 0+ : xβ = o(xα) ssi α < β, lnx = o

(
1

xα

)

2 Développements limités

Dans toute la suite, n désigne un entier naturel, et a ∈ R

2.1 Développements limités usuels en 0

Dé�nition 2.

On dit que f admet un développement limité à l'ordre n en 0, ce que l'on note en abrégé DLn(0)
si et seulement si il existe un polynôme Pn de degré au plus égal à n, tel que : f(x)− Pn(x) =
o((x)n) au voisinage de 0.
Un DLn(0) de f s'écrit :
f(x) = Pn(x) + o(xn) = a0 + a1x+ · · ·+ anx

n + o(xn).

Remarque 1.

Quelle que soit la situation 1. ou 2., la quantité o( ) est une quantité "abstraite" qui tend vers
0 quand x tend vers 0, c'est à dire que les termes qui suivent sont négligeables au voisinage de
a par rapport aux termes qui les précédent. On ne calculera pas o( ). o( ) est l'erreur commise
en remplaçant f(x) par Pn(x).

Proposition 2.

Le polynôme Pn du DLn(0) de f est unique. Ce polynôme est appelé partie régulière du DLn(0)
de f et notée [f ]n.

Exemple 2.

Déterminer le DL2(0) de f(x) = 1 + 3x− 5x2 + 12x3 + 5x4

Exemple 3.

On veut trouver le DL de la fonction f(x) =
1

1− x
.

1. Donner la formule de 1 + x+ ...+ xn pour x ̸= 1.

2. En déduire une expression de f(x) puis son DLn(0).

Proposition 3.

La partie régulière d'une fonction paire est paire et la partie régulière d'une fonction impaire
est impaire.

2.2 Développements limités et fonctions dérivables

Théorème 1 (Formule de Taylor Young).
On suppose ici que n ⩾ 1. Soit f ∈ Cn−1(I), telle que f (n)(0) existe. Alors f admet un DLn(0)
donné par la formule de Mac-Laurin :

f(x) =
n∑

k=0

[
f (k)(0)

k!
xk

]
+ o (xn) = f(0) + f ′(0)x+

f ′′(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn + o (xn)
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Remarque 2.

� pour que f admette un DL0(0) il faut et il su�t que f soit continue en 0
� pour que f admette un DL1(0) il faut et il su�t que f soit dérivable en 0
� il existe des fonctions qui ne véri�ent pas les hypothèses du théorème de Taylor-Young

et qui ont néanmoins un DL pour n ⩾ 2 :

Exemple 4.

Donner le DLn(0) de f(x) = exp(x).

2.3 Quelques DLn(0) usuels

ex =

cosx =

sinx =

chx =

shx =

(1 + x)α =

1

1 + x
=

1

1− x
=

3
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2.4 Opérations sur les DL

1. La combinaison linéaire

Soit f et g deux fonctions de F(I,R) et λ ∈ R. On suppose que f et g admettent des
DLn(0) alors f + λg admet un DLn(0) et on a : [f + λg]n = [f ]n + λ[g]n.

2. La multiplication

Soit f et g deux fonctions de F(I,R). On suppose que f et g admettent des DLn(0)
alors f.g admet un DLn(0) et on a : [f.g]n = [[f ]n.[g]n]n.
Cela signi�e que l'on ne conserve dans la partie régulière du DLn(0) de f.g que les termes
du développement de degré inférieur ou égal à n.

4



1A M2.1 2025-2026

Exemple 5.

(a) Donner le DL3(0) de
ex

1 + x

(b) Donner le DLn(0) de
1

(1− x)2

3. La composition

Soit f une fonction de F(I,R) et g une fonction de F(J,R) telles que f(I) ⊂ J . On
suppose que f(0) = 0 alors g ◦ f admet un DLn(0) et on a : [g ◦ f ]n = [g]n ◦ [f ]n.
Cela signi�e que l'on ne conserve dans la partie régulière du DLn(0) de g ◦ f que les
termes de la composition de degré inférieur ou égal à n.

Exemple 6.

Donner le DL4(0) de f(x) = ecosx

4. L'inverse

Soit g une fonction de F(I,R) admettant un DLn(0) telle que g(0) ̸= 0 alors
1

g
admet

un DLn(0) obtenu grâce à la division des polynômes suivant les puissances croissantes.

Exemple 7.

Donner le DL5(0) de f(x) =
1

chx

5. La division

Soit f et g deux fonctions de F(I,R). On suppose que f et g admettent des DLn(0) et

telle que g(0) ̸= 0 alors
f

g
admet un DLn(0) obtenu grâce à la division des polynômes

suivant les puissances croissantes.

Exemple 8.

Donner le DL5(0) de f(x) = tan x

2.5 L'intégration

Soit f ∈ C0(I) admettant un DLn(0) donné par f(x) =
n∑

k=0

[
f (k)(0)

k!
xk

]
+ o (xn). Alors toute

primitive F de f possède sur I un DLn+1(0) donné par :

F (x) = F (0) +
n∑

k=0

f (k)(0)

k!

xk+1

k + 1
+ o(xn+1)

La méthode est simplement d'intégrer "terme à terme" le DLn(0) de f et on rajoute le terme
constant F (0).
Ainsi, on trouve grâce à cette proposition :

ln(1 + x) =
n∑

k=1

(−1)k−1x
k

k
+ o(xn) = x− x2

2
+ · · ·+ (−1)n+1x

n

n
+ o(xn)

Arctanx =
n∑

k=0

(−1)k
x2k+1

2k + 1
+ o(x2n+2)
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Exemple 9.

Donner un DL3(0) de Arcsinx

2.6 La dérivation

Soit f ∈ C0(I) admettant un DLn(0) donné par f(x) =
n∑

k=0

[
f (k)(0)

k!
xk

]
+ o (xn). Alors le

DLn−1(0) de f ′, s'il existe est donné par :

f ′(x) =
n∑

k=1

1

(k − 1)!
f (k)(0)xk−1 + o(xn−1)

Exemple 10.

Montrer que la dérivée f ′ de la fonction : f(x) =

{
x2 sin

1

x
si x ̸= 0

0 si x = 0
n'admet pas de DL0(0)

alors que f admet un DL1(0)

2.7 Développements limités en a

Dé�nition 3.

On dit que f admet un développement limité à l'ordre n en a, ce que l'on note en abrégé DLn(a)
si et seulement si il existe un polynôme Pn de degré au plus égal à n, tel que : f(x)−Pn(x−a) =
o((x− a)n) au voisinage de a.
Un DLn(a) de f s'écrit :
f(x) = Pn(x− a) + o((x− a)n) = a0 + a1(x− a) + · · ·+ an(x− a)n + o((x− a)n).

Remarque 3.

Dans la pratique, on se ramènera toujours à un DLn(0) par changement de variable si c'est

6



1A M2.1 2025-2026

nécessaire. Pour déterminer le DLn(a) de f(x) on posera x = a+h et on fera un développement
limité en h en O.

Exemple 11.

Déterminer à l'ordre 3 le développement limité de f(x) = sin(x) en
π

2
.

ATTENTION : un DLn(a) c'est un polynôme en x−a. On ne développe pas la partie régulière
du DLn(a) pour réexprimer une partie régulière polynôme en x.

La formule de Taylor Mac-Laurin est un cas particulier de la formule suivante valable en un
réel a quelconque :

Théorème 2 (Formule de Taylor-Young).
On suppose ici que n ⩾ 1. Soit f ∈ Cn−1(I), telle que f (n)(a) existe. Alors f admet un DLn(a)
donné par la formule de Taylor-Young :

f(x) =
n∑

k=0

[
f (k)(a)

k!
(x− a)k

]
+ o ((x− a)n)

= f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n + o ((x− a)n)

3 Développement asymptotique

Dé�nition 4.

On dit que f admet un développement limité à l'ordre n en +∞ (respectivement en −∞),
appelé développement asymptotique de f et que l'on note en abrégé DLn(+∞) (respectivement
DLn(−∞) si et seulement si il existe un polynôme E et un polynôme Pn de degré au plus égal

à n, tel que : f(x)−
(
E(x) + Pn

(
1

x

))
= o

(
1

xn

)
au voisinage de +∞ (respectivement −∞).

Un développement asymptotique c'est à dire un DLn(±∞) de f s'écrit :

f(x) = E(x) + Pn

(
1

x

)
+ o

(
1

xn

)
= E(x) +

a1
x

+ · · ·+ an
xn

+ o

(
1

xn

)
.

On fait un changement de variables en posant x =
1

t
c'est à dire t =

1

x
. On cherche alors un

DLn(0), puis on repasse à f(x).

Exemple 12.

Déterminer le développement asymptotique en +∞ à l'ordre 2 de f(x) =
√
x2 + 5x+ 1

4 Equivalence

Dé�nition 5.

Soient f et f deux fonctions de F(I,R). On dit que f est équivalente à g au voisinage de
a où a ∈ [−∞,+∞], si et seulement si : f − g = o(g) au voisinage de a. On note f ∼

a
g ou

f(x) ∼
x→a

g(x).
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Proposition 4 (Caractérisation).
Si g ̸= 0 au voisinage de a alors on a :

f ∼
a
g ⇔ f(x)

g(x)
→ 1
x→a

Exemple 13.

Á t'on les équivalences suivantes en 0 :

1. ex ∼ 1 + x

2. ex ∼ 1 + 2x

3. ex − 1 ∼ 2x

Remarque 4.

D'après l'exemple précédent, on remarque que l'équivalent d'une fonction n'est pas unique.
D'autre part, on ne peut pas manipuler facilement les équivalents.

Proposition 5. Si f ∼ g et l ∼ k au voisinage de a alors lim
x→a

f

l
= lim

x→a

g

k

4.1 Quelques équivalents usuels en 0

Pour donner un équivalent, on peut utiliser le développement limité de la fonction, on obtient
ainsi :
ex − 1∼

0
ln(1 + x)∼

0
(1 + x)α∼

0

cosx∼
0

sinx∼
0

tanx∼
0

shx∼
0

thx∼
0

Arcsinx∼
0
x

Arctanx∼
0

Argshx∼
0

Argthx∼
0

5 Applications

5.1 Applications des développements limités

Il existe de nombreuses applications des développements limités dont voici les principales :

1. Pour calculer une limite.
On pourra utiliser la proposition 5 ou utiliser un DL.

Exemple 14.

calculer lim
x→0

x(1 + cos x)− 2 tanx

2x− sinx− tanx

2. Pour donner une équation d'une tangente en un point.

Si f admet un DLn(a) du type : f(x) = a0 + a1(x − a) + a2(x − a)2 + · · · + an(x −
a)n + o((x− a)n) alors y = a0 + a1(x− a) est l'équation de la tangente en (a, f(a)) et sa
position est donné par le signe du 1er membre non nul qui suit a1(x− a).

Exemple 15.

Donner une équation de la tangente en 1 de la fonction Arctanx et sa position de la
courbe par rapport à cette tangente.
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5.2 Application des développements asymptotiques

Equation des asymptotes.

Si f admet DLn(±∞) du type : f(x) = a0x + a1 +
ap
xp

+ o

(
1

xp

)
alors y = a0x + a1 est une

asymptote oblique à la courbe représentative de f en ±∞. Le signe du terme
ap
xp

donne la

position de la courbe par rapport à son asymptote.

Exemple 16.

Donner une équation de l'asymptote oblique à la courbe d'équation y =

√
x3

x− 1
et sa position

par rapport à son asymptote oblique.
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Exercices TD 1 - 3

Exercice 1. Rappeler lesDLn(0) de
1

1− u
et exp(u) puis déterminer lesDL3(0) des expressions

suivantes :

1. 1− 1

1− x

2.
1

1 + x2

3.
1

1− 3x

4.
1

2 + x
5. exp(2x)

6. exp(x2)

7. x exp(−x)

8. exp(x+ 1)

Exercice 2.

Donner les DL3(0) des fonctions suivantes :

1. a(x) = sinx+ cosx

2. b(x) = sinx ln(1 + x)

3. c(x) = cos x ln(1 + 2x)

4. d(x) = x ln(x+ 1)− x

5. e(x) =
sin 2x

x

6. f(x) =

√
x+ 1− 1

x

7. g(x) =
x2 + 1

x2 + 2x+ 2

8. h(x) = ln(1 + sinx)

9. i(x) = ln

(
1

cosx

)
10. j(x) =

arctanx

1− x2

11. k(x) = 3
√
1 + x puis de o(x) =

3
√
1− x2

12. (Optionnel - di�cile*) l(x) =
1

x
− 1

sinx

Exercice 3.

En passant par le calcul de leur dérivée, déterminer les développements limités à l'ordre 3 de
f(x) = ln(3 + x) et g(x) = arcsin(x).

Exercice 4.

Donner un DL3(1) de f(x) =
√
x

Exercice 5.

Donner un DL3(+∞) de

1. f(x) =
3
√
x3 + 1− (x+ 1)

2. g(x) =
x3 + 2

x− 1

Exercice 6.

1. Donner un DL2(+∞) de
x+ 1

x+ 2

2. Donner un DL2(+∞) de

√
x+ 1

x+ 2

3. Donner un DL2(0) de Arctanx

4. Donner un DL2(+∞) de Arctan

(√
x+ 1

x+ 2
− 1

)
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Exercice 7.

1. Écrire le développement limité à l'ordre 3, lorsque x tend vers +∞ de la fonction lnx−
ln(x− 1).

2. En déduire la limite suivante : lim
x→+∞

1

ex

(
x

x− 1

)x2

Exercice 8.

Calculer la limite suivante : lim
x→+∞

(
1 +

1

x

)x

Exercice 9.

Déterminer les tangentes des représentations graphiques des fonctions suivantes en 0, ainsi que
la position relative de la courbe et de la tangente au voisinage de 0, et représenter l'allure de
la courbe au voisinage de 0.

1. f(x) =
sin(x)

x

2. g(x) =
ex − 1− x

x sin(x)

Exercice 10.

En utilisant des développements limités au voisinage de l'in�ni aux courbes d'équations sui-
vantes :

� déterminer une équation des asymptotes
� Déterminer leur position relative.
� Déterminer l'allure de la courbe au voisinage de l'in�ni.

1. y =
√
x2 + 4x− 5

2. y = x2 ln

(
x− 1

x

)
3. y = e−

1
x

√
x2 + 1

Exercice 11.

Donner un équivalent de :

1. lnx en 1.
2. ln4 (1 + x) en 0.

3.
sinx

x
en 0.

4.
sin(2x)

(ln(1 + 3x))2
en 0.

5. ln(1 + 2x)− sin(2x) en 0.

6.
x2 + 3

x4 + 2
en +∞.

7.
e−x + 2

x2 + x4
en +∞ puis en −∞.

Exercice 12.

Trouver les limites en zéro à partir de développements limités ou d'équivalents de :

1. f(x) =
sinx− x cosx

x(1− cosx)

2. f(x) =
sinx− tanx

x3

3. f(x) =
1

x2
− 1

sin2 x

4. f(x) =
1

x
− 1

ln(1 + x)

11



1A M2.1 2025-2026

5. f(x) =
1

x

(
1

thx
− 1

tanx

)
6. f(x) =

1

x
ln

(
ex − 1

x

)
7. f(x) =

cosx

ln (1 + x)

Exercice 13.

Trouver les limites en 1 à partir d'un DLn(1) ou équivalent en 1 de :

1. f(x) =
1

lnx
− x

lnx

2. f(x) =
1− x+ lnx

1−
√
2x− x2

3. f(x) =
ex − e1/x

x2 − 1

Exercice 14.

On considère la fonction f(x) =

{ (
1 + x2

)
+ x2ε (x) si x ̸= 0
1 si x = 0

,

où ε (x) = x sin
1

x
.

Montrer que f admet un DL2(0) qui ne provient pas de la formule de Mac-Laurin.
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