Fiche Méthode

Pour montrer qu'une famille de vecteurs $\{e_1, e_2, ..., e_p\}$ est une famille libre dans E

- si cette famille ne contient qu'un vecteur il suffit de montrer que ce vecteur n'est pas le vecteur nul.
- si cette famille ne contient que deux vecteurs il suffit de montrer que ces deux veceturs ne sont pas colinéaires
- si nous avons plus de deux vecteurs nous considérons $a_1, a_2, ..., a_p$ des scalaires tels que $a_1e_1 + a_2e_2 + ... + a_pe_p = 0_E$ alors il faut prouver que $a_1 = a_2 = ... a_p = 0$.
- si nous savons qu'une famille de vecteurs est une base alors c'est une famille libre.
- toute sous-famille d'une famille libre est libre
- Si l'e.v E est un e.v de dimension n alors toute famille libre admet un nb de vecteurs $\leq n$. (En particulier toute famille ayant strictement plus de n vecteurs ne pourra pas être libre).

Pour montrer qu'une famille de vecteurs $\{u_1, u_2, ..., u_p\}$ est une famille génératrice d'un sev F

- par la définition à savoir $\forall u \in F$ nous devons prouver qu'il existe $a_1, a_2, ..., a_p$ tels que $u = a_1u_1 + a_2u_2 + + a_pu_p$
- si nous savons que $F = Vect(u_1, u_2, ..., u_p)$ alors par définition nous savons que $\{u_1, u_2, ..., u_p\}$ est une famille génératrice de F
- si nous savons qu'une famille de vecteurs est une base alors c'est une famille génératrice.
- si nous enlevons à une famille génératrice un vecteur qui se décompose sur cette famille alors cette famille reste génératrice.
- Si l'e.v E est un e.v de dimension n alors toute famille génératrice admet un nb de vecteurs $\geq n$. (En particulier toute famille ayant strictement moins de n vecteurs ne pourra pas être génératrice).

Pour prouver qu'une famille de vecteurs est une BASE

- on prouve que c'est une famille à la fois libre et génératrice.
- si dim(E) = n alors toute famille libre de n vecteurs est une base.
- si dim(E) = n alors toute famille génératrice de n vecteurs est une base.

Pour trouver la DIMENSION d'un sev F

- soit nous connaissons une base de F donc la dimension de F c'est le nombre de vecteurs dans cette famille.
- nous pouvons être amenés à utiliser la formule de Grassman $dim(F+G) = dim(F) + dim(G) dim(F \cap G)$
- $-dim(\mathbb{R}^n) = n$

Pour prouver que deux sev en dimension finie F et G sont egaux

- nous prouvons les deux inclusions $F \subseteq G$ et $G \subseteq F$
- sinon on prouve une inclusion une inclusion $F \subseteq G$ et l'égalité des dimensions dim(F) = dim(G).

Pour prouver que E est un espace vectoriel

- soit prouver tous les items du cours
- soit prouver que E est un sous espace vectoriel d'un espace vectoriel connu.

Pour prouver que F est un sous espace vectoriel de E

- prouver que $0_E \in F$ et que $\forall u \in F$ $\forall v \in F$, $\forall \alpha \in K$ $\forall \beta \in K$ alors $\alpha u + \beta v \in F$.
- se rappeler que l'intersection de deux sous espaces vectoriels est un sous espace vectoriel

Pour trouver le rang d'une famille de vecteurs $f_1, f_2, ..., f_k$ — par définition $rang(\{f_1, f_2, ..., f_k\}) = dim(Vect(f_1, f_2, ..., f_k))$

Pour prouver que deux sev F et G sont supplémentaires ds un ev E de dimension finie

- par définition on doit prouver F + G = E et $F \cap G = \{0_E\}$
- on prouve que $F \cap G = \{0_E\}$ et dim(F) + dim(G) = dim(E)
- on prouve que F + G = E et dim(F) + dim(G) = dim(E)
- si $F = Vect(f_1, f_2, ...f_p)$ $G = Vect(g_1, g_2, ..., g_q)$ il faut prouver que la famille de vecteurs $(f_1, f_2, ...f_p, g_1, g_2, ..., g_q)$ est une base de E.