Développements asymptotiques

Développement asymptotique

f admet un développement limité à l'ordre n en $+\infty$ (respectivement en $-\infty$), appelé développement asymptotique de f et que l'on note en abrégé $DL_n(+\infty)$ (respectivement $DL_n(-\infty)$ si et seulement si il existe un polynôme E et un polynôme P_n de degré au plus égal à n, tel que : $f(x) - \left(E(x) + P_n\left(\frac{1}{x}\right)\right) = o\left(\frac{1}{x^n}\right)$ au voisinage de $+\infty$ (respectivement $-\infty$).

Un développement asymptotique c'est à dire un $DL_n(\pm \infty)$ de f s'écrit :

$$f(x) = E(x) + P_n\left(\frac{1}{x}\right) + o\left(\frac{1}{x^n}\right) = E(x) + \frac{a_1}{x} + \dots + \frac{a_n}{x^n} + o\left(\frac{1}{x^n}\right).$$

Comment procéder

On fait un changement de variables en posant $x = \frac{1}{t}$ c'est à dire $t = \frac{1}{x}$. On cherche alors un $DL_n(0)$, puis on repasse à f(x).

Déterminer le développement asymptotique en $+\infty$ à l'ordre 2 de $f(x) = \sqrt{x^2 + 5x + 1}$

On pose
$$x = \frac{1}{t}$$

$$f(x) = (1 + \frac{5}{t} + \frac{1}{t^2})^{\frac{1}{2}}$$

On pose
$$x = \frac{1}{t}$$

$$f(x) = (1 + \frac{5}{t} + \frac{1}{t^2})^{\frac{1}{2}}$$

$$f(x) = (\frac{t^2 + 5t + 1}{t^2})^{\frac{1}{2}}$$

On pose
$$x = \frac{1}{t}$$

$$f(x) = (1 + \frac{5}{t} + \frac{1}{t^2})^{\frac{1}{2}}$$

$$f(x) = (\frac{t^2 + 5t + 1}{t^2})^{\frac{1}{2}}$$

$$f(x) = \frac{1}{|t|} (1 + 5t + t^2)^{\frac{1}{2}}$$

On pose
$$x = \frac{1}{t}$$

$$f(x) = (1 + \frac{5}{t} + \frac{1}{t^2})^{\frac{1}{2}}$$

$$f(x) = (\frac{t^2 + 5t + 1}{t^2})^{\frac{1}{2}}$$

$$f(x) = \frac{1}{|t|} (1 + 5t + t^2)^{\frac{1}{2}}$$

$$u = 5t + t^2 \quad \alpha = \frac{1}{2}$$

$$f(x) = \frac{1}{|t|} \left[1 + \frac{1}{2}u + \frac{1}{2}(\frac{1}{2} - 1)\frac{u^2}{2} + \frac{1}{2}(\frac{1}{2} - 1)(\frac{1}{2} - 2)\frac{u^3}{3!} + o(u^3) \right]$$

$$f(x) = \frac{1}{|t|} \left[1 + \frac{1}{2}u + \frac{1}{2}(\frac{1}{2} - 1)\frac{u^2}{2} + \frac{1}{2}(\frac{1}{2} - 1)(\frac{1}{2} - 2)\frac{u^3}{3!} + o(u^3) \right]$$

$$f(x) = \frac{1}{|t|} \left[1 + \frac{1}{2}u + \frac{-1}{8}u^2 + \frac{1}{16}u^3 + o(u^3) \right]$$

$$f(x) = \frac{1}{|t|} \left[1 + \frac{1}{2}u + \frac{1}{2}(\frac{1}{2} - 1)\frac{u^2}{2} + \frac{1}{2}(\frac{1}{2} - 1)(\frac{1}{2} - 2)\frac{u^3}{3!} + o(u^3) \right]$$

$$f(x) = \frac{1}{|t|} \left[1 + \frac{1}{2}u + \frac{-1}{8}u^2 + \frac{1}{16}u^3 + o(u^3) \right]$$

$$f(x) = \frac{1}{|t|} \left[1 + \frac{1}{2} (5t + t^2) + \frac{-1}{8} (5t + t^2)^2 + \frac{1}{16} (5t + t^2)^3 + o(t^3) \right]$$

$$f(x) = \frac{1}{|t|} \left[1 + \frac{1}{2}u + \frac{1}{2} \left(\frac{1}{2} - 1 \right) \frac{u^2}{2} + \frac{1}{2} \left(\frac{1}{2} - 1 \right) \left(\frac{1}{2} - 2 \right) \frac{u^3}{3!} + o(u^3) \right]$$
$$f(x) = \frac{1}{|t|} \left[1 + \frac{1}{2}u + \frac{-1}{8}u^2 + \frac{1}{16}u^3 + o(u^3) \right]$$

$$f(x) = \frac{1}{|t|} \left[1 + \frac{1}{2} (5t + t^2) + \frac{-1}{8} (5t + t^2)^2 + \frac{1}{16} (5t + t^2)^3 + o(t^3) \right]$$

$$f(x) = \frac{1}{|t|} \left[1 + \frac{1}{2} (5t + t^2) + \frac{-1}{8} (25t^2 + 10t^3) + \frac{1}{16} (125t^3)^3 + o(t^3) \right]$$

$$f(x) = \frac{1}{|t|} \left[1 + \frac{1}{2} (5t + t^2) + \frac{-1}{8} (25t^2 + 10t^3) + \frac{1}{16} (125t^3)^3 + o(t^3) \right]$$

$$f(x) = \frac{1}{|t|} \left[1 + \frac{1}{2} (5t + t^2) + \frac{-1}{8} (25t^2 + 10t^3) + \frac{1}{16} (125t^3)^3 + o(t^3) \right]$$

$$f(x) = \frac{1}{|t|} \left[1 + \frac{5}{2}t + \frac{-21}{8}t^2 + \frac{105}{16}t^3 + o(t^3) \right]$$

$$f(x) = \frac{1}{|t|} \left[1 + \frac{1}{2} (5t + t^2) + \frac{-1}{8} (25t^2 + 10t^3) + \frac{1}{16} (125t^3)^3 + o(t^3) \right]$$
$$f(x) = \frac{1}{|t|} \left[1 + \frac{5}{2}t + \frac{-21}{8}t^2 + \frac{105}{16}t^3 + o(t^3) \right]$$

$$t > 0$$
 $x + \infty f(x) = x + \frac{5}{2} + \frac{-21}{8} \frac{1}{x} + \frac{105}{16} \frac{1}{x^2} + o(\frac{1}{x^2})$

$$t < 0$$
 $x + -\infty f(x) = -x - \frac{5}{2} + \frac{21}{8} \frac{1}{x} + \frac{-105}{16} \frac{1}{x^2} + o(\frac{1}{x^2})$

Équivalence

Équivalence : définition

Soient f et f deux fonctions de $\mathcal{F}(I,\mathbb{R})$. On dit que f est équivalente à g au voisinage de a où $a \in [-\infty, +\infty]$, si et seulement si : f-g=o(g) au voisinage de a. On note $f \underset{a}{\sim} g$ ou $f(x) \underset{x \to a}{\sim} g(x)$.

Équivalence : Caractérisation fondamentale

Si $g \neq 0$ au voisinage de a alors on a :

$$f \sim g \Leftrightarrow \frac{f(x)}{g(x)} \underset{x \to a}{\longrightarrow} 1$$

'A t'on les équivalents suivants en 0 :

- **1** $e^x \sim 1 + x$
- ② $e^x \sim 1 + 2x$
- 3 $e^{x} 1 \sim 2x$

$$\frac{e^x}{1+x} \underset{x \to 0}{\to} 1$$

$$\frac{e^x}{1+x} \underset{x \to 0}{\to} 1$$

$$\frac{e^x}{1+2x} \mathop{\to}_{x\to 0}^1$$

$$\frac{e^x}{1+x} \underset{x \to 0}{\to} 1$$

$$\frac{e^x}{1+2x} \mathop{\to}_{x\to 0}^1$$

$$\frac{e^x - 1}{2x} \to \frac{1}{2}$$

$$\xrightarrow{x \to 0}$$

Application des DL

Ainsi si f admet un $DL_n(0)$ alors $f \underset{0}{\sim} [f]_n$

$$e^{x} - 1 \underset{0}{\sim} x$$
$$(1 + x)^{\alpha} \underset{0}{\sim} 1$$
$$\cos x \underset{0}{\sim} 1$$

$$\ln(1+x) \underset{0}{\sim} x$$

$$\sin x \sim x$$

$$\tan x \mathop{\sim}_0 x$$

 $shx \underset{0}{\sim} x$ $Arcsinx \underset{0}{\sim} x$ $Arctanx \underset{0}{\sim} x$

 $\tanh x \mathop{\sim}_0 x$

 $\mathop{\it Argshx} \mathop{\sim}\limits_0 x$

 $Argthx \sim_0 x$

$$shx \underset{0}{\sim} x$$
 $tanh x \underset{0}{\sim} x$ $Arcsinx \underset{0}{\sim} x$ $Argshx \underset{0}{\sim} x$ $Argthx \underset{0}{\sim} x$ $Argthx \underset{0}{\sim} x$ $Argthx \underset{0}{\sim} x$

- Tout polynôme non nul est équivalent en $+\infty$ ou $-\infty$, à son terme de plus haut degré
- Tout polynôme non nul est équivalent en 0 , à son terme de plus bas degré
- Toute fraction rationnelle non nulle est équivalente en $+\infty$ ou $-\infty$, au quotient de ses termes de plus haut degré
- Toute fraction rationnelle non nulle est équivalente en 0, au quotient de ses termes de plus bas degré

Equivalents et opérations usuelles

Il est possible de MULTIPLIER des équivalents, en Revanche il est interdit d'additionner des équivalents

$$x + x^2 \sim x$$
 $-x + x^3 \sim -x$ $f + g \sim x^2 \neq 0$

au voisinage de 0

Applications des développements limités et asymptotiques

Applications des DL

Il existe de nombreuses applications des développements limités dont voici les principales :

- Pour calculer une limite.
- Pour donner une équation d'une tangente en un point. Si f admet un $DL_n(a)$ du type : $f(x) = a_0 + a_1(x-a) + a_2(x-a)^2 + \cdots + a_n(x-a)^n + o((x-a)^n)$ alors $y = a_0 + a_1(x-a)$ est l'équation de la tangente en (a, f(a)) et sa position est donné par le signe du 1er membre non nul qui suit $a_1(x-a)$.

Calculer
$$\lim_{x\to 0} \frac{x(1+\cos x)-2\tan x}{2x-\sin x-\tan x}$$

Exemple : Dénominateur

$$2x - \sin(x) - \tan(x) = 2x - \left(x - \frac{x^3}{6} + o(x^3)\right) - \left(x + \frac{x^3}{3} + o(x^3)\right) + o(x^3)$$

Exemple : Dénominateur

$$2x - \sin(x) - \tan(x) = 2x - \left(x - \frac{x^3}{6} + o(x^3)\right) - \left(x + \frac{x^3}{3} + o(x^3)\right) + o(x^3)$$

$$2x - \sin(x) - \tan(x) = (\frac{1}{6} - \frac{1}{3})x^3 + o(x^3) = \frac{-1}{6}x^3 + o(x^3)$$

Exemple: Numérateur

$$x(1 + cos(x)) - 2tan(x) = x[1 + 1 - \frac{x^2}{2} + o(x^3)] - 2(x + \frac{x^3}{3} + o(x^3)) + o(x^3)$$

Exemple : Numérateur

$$x(1 + cos(x)) - 2tan(x) = x[1 + 1 - \frac{x^2}{2} + o(x^3)] - 2(x + \frac{x^3}{3} + o(x^3)) + o(x^3)$$
$$x(1 + cos(x)) - 2tan(x) = \frac{-7}{6}x^3 + o(x^3)$$

$$\frac{x(1+\cos x)-2\tan x}{2x-\sin x-\tan x}=\frac{\frac{-1}{6}x^3+o(x^3)}{\frac{-7}{6}x^3+o(x^3)}$$

$$\frac{x(1+\cos x)-2\tan x}{2x-\sin x-\tan x}=\frac{\frac{-1}{6}x^3+o(x^3)}{\frac{-7}{6}x^3+o(x^3)}$$

$$\frac{x(1+\cos x)-2\tan x}{2x-\sin x-\tan x}=\frac{x^3(\frac{-1}{6}+o(1))}{x^3(\frac{-7}{6}+o(1))}$$

$$\frac{x(1+\cos x)-2\tan x}{2x-\sin x-\tan x}=\frac{\frac{-1}{6}x^3+o(x^3)}{\frac{-7}{6}x^3+o(x^3)}$$

$$\frac{x(1+\cos x)-2\tan x}{2x-\sin x-\tan x}=\frac{x^3(\frac{-1}{6}+o(1))}{x^3(\frac{-7}{6}+o(1))}$$

$$\lim_{x \to 0} \frac{x(1 + \cos x) - 2\tan x}{2x - \sin x - \tan x} = \frac{1}{7}$$

Donner une équation de la tangente en 1 de la fonction *Arctanx* et sa position de la courbe par rapport à cette tangente.

$$f(x) = f(1) + (x - 1)f'(1) + \frac{(x - 1)^2}{2}f''(1) + o((x - 1)^2)$$

$$f(x) = f(1) + (x-1)f'(1) + \frac{(x-1)^2}{2}f''(1) + o((x-1)^2)$$

$$f(x) = Arctan(x)$$
 $f(1) = \frac{\pi}{4}$

$$f(x) = f(1) + (x-1)f'(1) + \frac{(x-1)^2}{2}f''(1) + o((x-1)^2)$$

$$f(x) = Arctan(x)$$
 $f(1) = \frac{\pi}{4}$

$$f'(x) = \frac{1}{1+x^2}$$
 $f'(1) = \frac{1}{2}$

$$f(x) = f(1) + (x - 1)f'(1) + \frac{(x - 1)^2}{2}f''(1) + o((x - 1)^2)$$

$$f(x) = Arctan(x)$$
 $f(1) = \frac{\pi}{4}$

$$f'(x) = \frac{1}{1+x^2}$$
 $f'(1) = \frac{1}{2}$

$$f''(x) = \frac{-2x}{(1+x^2)^2}$$
 $f''(1) = \frac{-1}{2}$

$$f(x) = \frac{\pi}{4} + (x-1)\frac{1}{2} + \frac{(x-1)^2}{2} - \frac{1}{2} + o((x-1)^2)$$

$$f(x) = \frac{\pi}{4} + (x-1)\frac{1}{2} + \frac{(x-1)^2}{2} - \frac{1}{2} + o((x-1)^2)$$

La tangente en 1 a pour équation $y = 0.5x + (\pi/4 - 1/2)$ et la courbe de la fonction est située en dessous de sa tangente en 1

Développement asymptotique : application avec l'équation aux asymptotes

Par un changement de variables en posant $x=\frac{1}{t}$ c'est à dire $t=\frac{1}{x}$. On cherche alors un $DL_n(0)$, puis on repasse à f(x). Si f admet $DL_n(\pm\infty)$ du type : $f(x)=a_0x+a_1+\frac{a_p}{x^p}+o\left(\frac{1}{x^p}\right)$ alors $y=a_0x+a_1$ est une asymptote oblique à la courbe représentative de f en $\pm\infty$. Le signe du terme $\frac{a_p}{x^p}$ donne la position de la courbe par rapport à son asymptote.

Donner une équation de l'asymptote oblique à la courbe d'équation $y=\sqrt{\frac{x^3}{x-1}}$ et sa position par rapport à son asymptote oblique.

Justification de la recherche d'une asymptote oblique

$$\forall x \in D_f \quad f(x) = \sqrt{\frac{x^3}{x-1}} = \sqrt{x^2} \sqrt{\frac{x}{x-1}} = |x| \sqrt{\frac{x}{x-1}}$$

Justification de la recherche d'une asymptote oblique

$$\forall x \in D_f \quad f(x) = \sqrt{\frac{x^3}{x-1}} = \sqrt{x^2} \sqrt{\frac{x}{x-1}} = |x| \sqrt{\frac{x}{x-1}}$$

$$\lim_{x\to+\infty}f(x)=+\infty$$

$$f(x) = \sqrt{\frac{\frac{1}{h^3}}{\frac{1}{h} - 1}} = \sqrt{\frac{\frac{1}{h^2}}{1 - h}}$$

$$f(x) = \sqrt{\frac{\frac{1}{h^3}}{\frac{1}{h} - 1}} = \sqrt{\frac{\frac{1}{h^2}}{1 - h}}$$
$$= \frac{1}{h} \frac{1}{\sqrt{1 - h}} = \frac{1}{h} (1 - h)^{\frac{-1}{2}}$$

$$f(x) = \sqrt{\frac{\frac{1}{h^3}}{\frac{1}{h} - 1}} = \sqrt{\frac{\frac{1}{h^2}}{1 - h}}$$
$$= \frac{1}{h} \frac{1}{\sqrt{1 - h}} = \frac{1}{h} (1 - h)^{\frac{-1}{2}}$$

$$=\frac{1}{h}(1+0.5h+(-0.5)(-1.5)\frac{h^2}{2})=\frac{1}{h}+\frac{1}{2}+\frac{3}{8}h=x+\frac{1}{2}+\frac{3}{8}\frac{1}{x}+o(\frac{1}{x})$$

Étude au voisinage de $+\infty$:

$$f(x) = \sqrt{\frac{\frac{1}{h^3}}{\frac{1}{h} - 1}} = \sqrt{\frac{\frac{1}{h^2}}{1 - h}}$$
$$= \frac{1}{h} \frac{1}{\sqrt{1 - h}} = \frac{1}{h} (1 - h)^{\frac{-1}{2}}$$

$$=\frac{1}{h}(1+0.5h+(-0.5)(-1.5)\frac{h^2}{2})=\frac{1}{h}+\frac{1}{2}+\frac{3}{8}h=x+\frac{1}{2}+\frac{3}{8}\frac{1}{x}+o(\frac{1}{x})$$

L'asymptote oblique a pour équation $x + \frac{1}{2}$ et la courbe est au dessus de son asymptote en $+\infty$

$$f(x) = \sqrt{\frac{\frac{1}{h^3}}{\frac{1}{h} - 1}} = \sqrt{\frac{\frac{1}{h^2}}{1 - h}}$$

$$f(x) = \sqrt{\frac{\frac{1}{h^3}}{\frac{1}{h} - 1}} = \sqrt{\frac{\frac{1}{h^2}}{1 - h}}$$
$$= \frac{-1}{h} \frac{1}{\sqrt{1 - h}} = \frac{-1}{h} (1 - h)^{\frac{-1}{2}}$$

$$f(x) = \sqrt{\frac{\frac{1}{h^3}}{\frac{1}{h} - 1}} = \sqrt{\frac{\frac{1}{h^2}}{1 - h}}$$
$$= \frac{-1}{h} \frac{1}{\sqrt{1 - h}} = \frac{-1}{h} (1 - h)^{\frac{-1}{2}}$$

$$\frac{-1}{h}(1+0.5h+(-0.5)(-1.5)\frac{h^2}{2}+o(h^2))=\frac{-1}{h}-\frac{1}{2}-\frac{3}{8}h=o(h)$$

$$f(x) = \sqrt{\frac{\frac{1}{h^3}}{\frac{1}{h} - 1}} = \sqrt{\frac{\frac{1}{h^2}}{1 - h}}$$
$$= \frac{-1}{h} \frac{1}{\sqrt{1 - h}} = \frac{-1}{h} (1 - h)^{\frac{-1}{2}}$$

$$\frac{-1}{h}(1+0.5h+(-0.5)(-1.5)\frac{h^2}{2}+o(h^2))=\frac{-1}{h}-\frac{1}{2}-\frac{3}{8}h=o(h)$$

$$= -x - \frac{1}{2} - \frac{3}{8} \frac{1}{x} + o(\frac{1}{x})$$

L'asymptote oblique a pour équation $-x-\frac{1}{2}$ et la courbe est au dessus de son asymptote en $-\infty$