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Taylor expansions

Objectifs

� Know common Taylor expansions.

� Calculate taylor expansions by di�erent techniques.

� Know when to apply taylor expansions.

Throughout this chapter, I represents any interval of R. F(I,R) represents the set of functions
de�ned from I to R.

1 Little o notation

De�nition 1.

Let I be a real interval and a a real. a ∈ R or a is an endpoint of I. Let f and g be two functions
of F(I,R). f is a little "o" of g at the neighborhood of a where a ∈ [−∞,+∞], if and only if :

1. Case a ∈ R : ∀ε > 0,∃α > 0,∀x ∈ I, |x− a| 6 α⇒ |f(x)| 6 ε|g(x)|
2. Case a = +∞ : ∀ε > 0,∃A ∈ R,∀x ∈ I, x > A⇒ |f(x)| 6 ε|g(x)|
3. Case a = −∞ : ∀ε > 0,∃A ∈ R, ∀x ∈ I, x 6 A⇒ |f(x)| 6 ε|g(x)|

f(x) = o (g(x))
x→a

we write f(x) = o (g(x))
x→a

(f is little-o of g) or if there is no confusion f = o(g). We also say

that f(x) is in�nitely small with respect to g(x) at the neighborhood of a.

Proposition 1 (Characterization).
The following sentences are equivalent :

1. f(x) = o (g(x))
x→a

2. If g 6= 0 at the neighborhood a,
f(x)

g(x)
→ 0
x→a

3. There exists a function ε such that f(x) = g(x)ε(x) avec ε(x)→ 0
x→a

at neighborhood of a.

Example 1.

1. Find all natural numbers n such that
x3

1 + x2
= o(xn) at the neighborhood of 0.

2. Let f be a function such that f(x) = o(x3) at the neighborhood of 0. Find natural

numbers n such that
f(x)

x
= o(xn).

Video : example 1
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We get properties for "o", like the comparative growth theorem :
en +∞ : xα = o(xβ) ssi α < β, xα = o(ex), lnx = o(xβ)

en 0+ : xβ = o(xα) ssi α < β, lnx = o

(
1

xα

)

2 Taylor expansion

In the following, n denotes a integers and a ∈ R

2.1 Taylor expansion at 0

De�nition 2.

Let I be a real interval such that 0 ∈ Io, f : I → R, n ∈ N. f has a serie expansion truncated
of at order n at the neighborhood of 0, denoted by DLn(0) if and only if there exists a real
polynomial Pn of degree less or equal than n, such that :

f(x)− Pn(x) = o(xn)

at the neighborhood of 0.
A DLn(0) of f is written :

f(x) = Pn(x) + o(xn)

f(x) = a0 + a1x+ · · ·+ anx
n + o(xn)

.

Remark 1.

Whatever is the situation, the little o() is an "abstract" quantity which tends to 0 as x ap-
proaches 0. We won't compute o(). o(), this is the error term when we approximate f(x) by
Pn(x).

Proposition 2.

This polynomial Pn in the Taylor expansion DLn(0) of f is UNIQUE. and denoted by [f ]n.

Example 2.

Find DL2(0) of f(x) = 1 + 3x− 5x2 + 12x3 + 5x4

Video : example 2

Proposition 3.

If f is even (respectively odd) then [f ]n is even (respectively odd).

2.2 Taylor expansion and di�erentiable functions

Theorem 4 (Mac-Laurin).
Let's assume that n > 1. If f ∈ Cn−1(I), such that f (n)(0) exists, f has a DLn(0) given by its
Mac-Laurin serie
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f(x) =
n∑
k=0

[
f (k)(0)

k!
xk
]
+ o (xn)

= f(0) + f ′(0)x+
f ′′(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn + o (xn)

Remark 2.

1. f has an expansion DL0(0), iif f is continuous at 0. Then

∀x ∈ I, f(x) = f(0) + o(1)

2. f has an expansion DL1(0) iif f is di�erentiable at 0. Then

∀x ∈ I, f(x) = f(0) + xf ′(0) + o(x)

3. there exists functions that do not satisfy Taylor Young's theorem but that get an ex-
pansion for n > 2

Example 3.

Let f be the function de�ned by f(x) =

{
x3 sin

1

x
si x 6= 0

0 si x = 0
Prove that f has an expansion DL2(0), but the second order derivative of f does not exist at
0.

Video : example 3

2.3 Common Taylor serie

ex =
cosx =

sinx =

chx =

shx =

(1 + x)α =

1

1 + x
=

1

1− x
=

3

https://www.loom.com/share/d916e800d3ce4b33a9782536f2a0d4b4 


1A M2.1 2020-2021

Video : for the exponential function
Video : for the sine and the cosine
Video : for the hyperbolic sine and the hyperbolic cosine
Video : other functions

4

https://www.loom.com/share/aba18fd2f4d5439f9781c75b8734a4b2 
https://www.loom.com/share/b321be55f0084c82a8aa9feb852fa967 
https://www.loom.com/share/4b553d5ac6f94b95bb82496af0a9460c 
https://www.loom.com/share/f59f91e534694dff8ecee13a80a36b70 


1A M2.1 2020-2021

2.4 Operations on taylor expansions

1. Linear combination
Let f and g be two functions of F(I,R) and λ ∈ R. We assume that both f and g get
Taylor series DLn(0) then f + λg has a Taylor expansion DLn(0) and : [f + λg]n =
[f ]n + λ[g]n.

2. Multiplication

Let f and g be two functions F(I,R). We assume that both f and g get series expansions
DLn(0) then f.g has a series expansion DLn(0) and we get : [f.g]n = [[f ]n.[g]n]n.

Example 4.

(a) Give DL3(0) of
ex

1 + x

(b) Give DLn(0) of
1

(1− x)2
Video : example 4 a)

Video : example 4 b)

3. Composition

Let f be a function of F(I,R) and g a function F(J,R) such that f(I) ⊂ J . We assume

that f(0) = 0 then g◦f has a series expansion DLn(0) and we get : [g◦f ]n = [g]n◦[f ]n.
Example 5.

Give DL4(0) of f(x) = ecosx

Video : example 5

4. The inverse
Let g be a function of F(I,R) getting a series expansion DLn(0) such that g(0) 6= 0
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then
1

g
has a series expansion DLn(0) get by increasing power order. The division by

increasing power order is useful to compute series expansion.

Example 6.

Give DL5(0) of f(x) =
1

chx
Video : example 6

5. The division
Let f and g be two functions of F(I,R). We assume that f and g get series expansions

DLn(0) such that g(0) 6= 0 then
f

g
has a series expansion DLn(0) get using a division

by increasing power.

Example 7.

Give DL5(0) of f(x) = tan x

Video : example 7

2.5 Integration

Let f ∈ C0(I) having a series expansion DLn(0) given by f(x) =
n∑
k=0

[
f (k)(0)

k!
xk
]
+o (xn). Then

all antiderivative F of f has a serie expansion on I DLn+1(0) given by :

F (x) = F (0) +
n∑
k=0

f (k)(0)

k!

xk+1

k + 1
+ o(xn+1)

The simplest method is to integrate "term by term" the series expansion DLn(0) of f and to
add the constant F (0) Thus we have

ln(1 + x) =
n∑
k=1

(−1)k−1x
k

k
+ o(xn) = x− x2

2
+ · · ·+ (−1)n+1x

n

n
+ o(xn)

Arctanx =
n∑
k=0

(−1)k x
2k+1

2k + 1
+ o(x2n+2)

Video : example
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Example 8. On your own
Give the DL3(0) of Arcsinx

2.6 Derivative

Let f ∈ C0(I) be a function getting a series expansion DLn(0) : f(x) =
n∑
k=0

[
f (k)(0)

k!
xk
]
+o (xn).

Then the series expansion DLn−1(0) of f
′, if it exists is given by :

f ′(x) =
n∑
k=1

1

(k − 1)!
f (k)(0)xk−1 + o(xn−1)

Example 9. On your own

Prove that the derivative f ′ of the function : f(x) =

{
x2 sin

1

x
si x 6= 0

0 si x = 0
has no expansion at

0 DL0(0) whereas f has an expansion DL1(0)

2.7 Series expansions at the neighborhood of a

De�nition 3.

f has a serie expansion truncated at order n at the neighborhood of a, denoted by DLn(a)
if and only if there exist a real polynomial Pn of degree less or equal than n, such that :
f(x)− Pn(x− a) = o((x− a)n) at the neighborhood of a.
The expansion DLn(a) of f is written :

f(x) = Pn(x− a) + o((x− a)n)

= a0 + a1(x− a) + · · ·+ an(x− a)n + o((x− a)n)
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Remark 3.

In practice using a change of variables we will compute a series expansion DLn(0) at 0. To
�nd the expansion DLn(a) of f(x) we set h = x − a ⇔ x = a + h and thus will compute an
expansion in h at 0.

Example 10.

Find the serie expansion truncated at 3 of f(x) = sin(x) at
π

2
.

Careful : a serie expansion DLn(a) is a polynomial expression in x − a. We won't developp
powers of x− a.

Taylor Mac-Laurin's formula is a particular case of the following formula true for any real
number a :

Theorem 5 (Taylor-Young formula).
Let's assume that n > 1. Let f ∈ Cn−1(I), such that its n-th order derivative f (n)(a) exists.
Then f has a series expansion DLn(a) given by Taylor-Young formula :

f(x) =
n∑
k=0

f (k)(a)

k!
(x− a)k + o((x− a)n)

= f(a) + f ′(a)(x− a) + f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n + o((x− a)n)

3 Asymptotic expansions

De�nition 4.

f has an expansion truncated at order n in the neighborhood of +∞ (respectively −∞), called
an asymptotic expansion of f and denoted by DLn(+∞) (respectively DLn(−∞) if and only
if there exists a polynomial E and a polynomial Pn of degree less or equal tahn n, such that :

f(x)−
(
E(x) + Pn

(
1

x

))
= o

(
1

xn

)
in the neighborhood of +∞ (respectively −∞).

An asymptotic expansion, that is to say a DLn(±∞) of f is written :

f(x) = E(x) + Pn

(
1

x

)
+ o

(
1

xn

)
= E(x) +

a1
x

+ · · ·+ an
xn

+ o

(
1

xn

)
.

We set a change of variables x =
1

t
which means t =

1

x
. Then we look for an expansion DLn(0),

then we go back to f(x).

Example 11.

Find the asymptotic expansion at +∞ truncated at order 2 of f(x) =
√
x2 + 5x+ 1

4 Equivalence

De�nition 5.

Let f and f be two functions F(I,R). f is asymptotically equivalent to g in the neighborhood
of a where a ∈ [−∞,+∞], if and only if : f − g = o(g) in the neighborhood of a. We denote
f ∼

a
g ou f(x) ∼

x→a
g(x).

8
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Proposition 6 (Fundamental Characterisation).
If g 6= 0 in the neighborhood of a then we get :

f ∼
a
g ⇔ f(x)

g(x)
→ 1
x→a

Example 12.

Find the following equivalents at 0 :

1. ex ∼ 1 + x

2. ex ∼ 1 + 2x

3. ex − 1 ∼ 2x

Video : example

Remark 4.

From the preceding example, we note that the equivalent of a function is not unique. On the
other hand, the equivalents can not be easily manipulated.

Proposition 7. If f ∼ g and l ∼ k in the neighborhood of a then lim
x→a

f

l
= lim

x→a

g

k

4.1 Fundamental examples at 0

If f has a series expansion DLn(0) then f ∼
0
[f ]n :

ex − 1∼
0

ln(1 + x)∼
0

(1 + x)α∼
0

cosx∼
0

sinx∼
0

tanx∼
0

Video : example

On your own

shx∼
0

thx∼
0

Arcsinx∼
0

Arctanx∼
0

Argshx∼
0

Argthx∼
0

1. All non zero polynomial is asymptotically equivalent at +∞ or −∞ to its higher degree
term.

2. All non zero polynomial is asymptotically equivalent at 0 to its lower degree term.

3. All non zero rational fraction is asymptotically equivalent at +∞ or −∞, to the quotient
of its higher degree terms.

4. All non zero rational fraction is asymptotically equivalent a 0, to the quotient of its lower
degree terms.

It is possible to MULTIPLY equivalents, however it is forbidden to add them.
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5 Applications

5.1 Applications of series and asymptotic expansions

Here is a list of the main applications :

1. To compute a limit.

2. To �nd the equation of a tangent at a point

If f has a serie expansion DLn(a) of the shape f(x) = a0 + a1(x − a) + a2(x − a)2 +
· · ·+ an(x− a)n+ o((x− a)n) then y = a0 + a1(x− a) is the equation of the tangent line
at (a, f(a)) and its position is given by the sign of the �rst non zero element following
a1(x− a).

Example 13.

Compute lim
x→0

x(1 + cos x)− 2 tanx

2x− sinx− tanx
Video : example
Video : example

On your own, prepare exercise 6) 1),2),3).

Example 14.

Give the equation of the tangent line at 1 for the function Arctanx and give its position.
Video : example

5.2 Asymptotic expansions and asymptotic behaviour

Asymptotic equation.

Using a change of variables, by setting x =
1

t
meaning t =

1

x
. We are looking for an expansion

DLn(0) and then go back to f(x). If f has an expansion DLn(±∞) of the shape : f(x) =

a0x+ a1 +
ap
xp

+ o

(
1

xp

)
then y = a0x+ a1 is an oblique asymptote for f en ±∞. The sign of

ap
xp

gives the position of the graph to the asymptote.

Example 15.

Find the equation of the oblique asymptote at the graph y =

√
x3

x− 1
and give the position of

the graph to the asymptote.

Video : example
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Exercises

Exercise 1.

Give the DL3(0) of those fuunctions :

1. f(x) = sin x+ cosx

2. b(x) = sin x ln(1 + x)

3. g(x) = e2x

4. h(x) = x ln(x+ 1)− x

5. a(x) =
x2 + 1

x2 + 2x+ 2

6. i(x) =
sinx

x

7. j(x) =

√
x+ 1− 1

x

8. k(x) = ln(1 + sinx)

9. l(x) =
arcsinx√
1− x2

10. c(x) = ln

(
1

cosx

)
11. m(x) =

1

x
− 1

sinx

12. n(x) = 3
√
1 + x and o(x) =

3
√
1− x2

Exercise 2.

Let f(x) =

{ (
1 + x2

)
+ x2ε (x) si x 6= 0

1 si x = 0
,

where ε (x) = x sin
1

x
.

Show that f amits a DL2(0) that does not comes from Mac-Laurin formula.

Exercise 3.

Give a DL3(1) of f(x) =
√
x

Exercise 4.

Give a DL3(+∞) of

1. f(x) =
3
√
x3 + 1− (x+ 1)

2. g(x) =
x3 + 2

x− 1

Exercise 5.

1. Give a DL2(+∞) of
x+ 1

x+ 2

2. Give a DL2(+∞) of

√
x+ 1

x+ 2

3. Give a DL2(0) of Arctanx

4. Give a DL2(+∞) of Arctan

(√
x+ 1

x+ 2
− 1

)
Exercise 6.

Find those limits at 0 using a DLn(0) :

1. f(x) =
sinx− x cosx
x(1− cosx)

2. f(x) =
sinx− tanx

x3

3. f(x) =
1

x2
− 1

sin2 x

11
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4. f(x) =
1

x
− 1

ln(1 + x)

5. f(x) =
1

x

(
1

thx
− 1

tanx

) 6. f(x) =
1

x
ln

(
ex − 1

x

)
7. f(x) =

cosx

ln (1 + x)

Exercise 7.

Find those limits at 1 using a DLn(1) :

1. f(x) =
1

lnx
− x

lnx

2. f(x) =
1− x+ lnx

1−
√
2x− x2

3. f(x) =
ex − e1/x

x2 − 1

Exercise 8.

1. Give the asymptotic expansion of order 3 for lnx− ln(x− 1).

2. Deduce this limit : lim
x→+∞

1

ex

(
x

x− 1

)x2
Exercise 9.

Calculate this limit : lim
x→+∞

(
1 +

1

x

)x
Exercise 10.

Give equations of the tangent lines at 0, as well as the relative position of the curve and its
tangent line in the neighborhood of 0

1. f(x) =
sin(x)

x

2. g(x) =
ex − 1− x
x sin(x)

Exercise 11.

Using Taylor expansions at in�nity, determine the equation of the asymptotes to those graphs :

1. y =
√
x2 + 4x− 5

2. y = x2 ln

(
x− 1

x

)
3. y = e−

1
x

√
x2 + 1

Exercise 12.

Give equivalents for :

1. lnx at 1.

2. ln4 (1 + x) at 0.

3.
sinx

x
at 0.

4.
x2 + 3

x4 + 2
at +∞.

5.
e−x + 2

x2 + x4
at +∞.
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