INSTIUT NATIONAL
DES SCIENCES
APPLLOUEES
CENTRE VAL DE LOIRE

Taylor expansions

Objectifs

- Know common Taylor expansions.

- Calculate taylor expansions by different techniques.
- Know when to apply taylor expansions.

Throughout this chapter, I represents any interval of $\mathbb{R} . \mathcal{F}(I, \mathbb{R})$ represents the set of functions defined from I to \mathbb{R}.

1 Little o notation

Definition 1.

Let I be a real interval and a a real. $a \in \mathbb{R}$ or a is an endpoint of I. Let f and g be two functions of $\mathcal{F}(I, \mathbb{R})$. f is a little "o" of g at the neighborhood of a where $a \in[-\infty,+\infty]$, if and only if :

1. Case $a \in \mathbb{R}: \forall \varepsilon>0, \exists \alpha>0, \forall x \in I,|x-a| \leqslant \alpha \Rightarrow|f(x)| \leqslant \varepsilon|g(x)|$
2. Case $a=+\infty: \forall \varepsilon>0, \exists A \in \mathbb{R}, \forall x \in I, x \geqslant A \Rightarrow|f(x)| \leqslant \varepsilon|g(x)|$
3. Case $a=-\infty: \forall \varepsilon>0, \exists A \in \mathbb{R}, \forall x \in I, x \leqslant A \Rightarrow|f(x)| \leqslant \varepsilon|g(x)|$
$f(x) \underset{x \rightarrow a}{o}(g(x))$
we write $f(x) \underset{x \rightarrow a}{o o}(g(x))(f$ is little-o of $g)$ or if there is no confusion $f=o(g)$. We also say that $f(x)$ is infinitely small with respect to $g(x)$ at the neighborhood of a.

Proposition 1 (Characterization).
The following sentences are equivalent :

1. $f(x) \underset{x \rightarrow a}{o}(g(x))$
2. If $g \neq 0$ at the neighborhood $a, \frac{f(x)}{g(x)} \underset{x \rightarrow a}{\rightarrow 0}$
3. There exists a function ε such that $f(x)=g(x) \varepsilon(x)$ avec $\varepsilon(x) \underset{x \rightarrow a}{\rightarrow 0}$ at neighborhood of a.

Example 1.

1. Find all natural numbers n such that $\frac{x^{3}}{1+x^{2}}=o\left(x^{n}\right)$ at the neighborhood of 0 .
2. Let f be a function such that $f(x)=o\left(x^{3}\right)$ at the neighborhood of 0 . Find natural numbers n such that $\frac{f(x)}{x}=o\left(x^{n}\right)$.
Video : example 1

INSTITU NATIONAL
DES SCIENCES
CENTRE VAL DE LOIRE

We get properties for " o ", like the comparative growth theorem :

$$
\begin{aligned}
& \text { en }+\infty: x^{\alpha}=o\left(x^{\beta}\right) \text { ssi } \alpha<\beta, x^{\alpha}=o\left(e^{x}\right), \ln x=o\left(x^{\beta}\right) \\
& \text { en } 0^{+}: x^{\beta}=o\left(x^{\alpha}\right) \text { ssi } \alpha<\beta, \ln x=o\left(\frac{1}{x^{\alpha}}\right)
\end{aligned}
$$

2 Taylor expansion

In the following, n denotes a integers and $a \in \mathbb{R}$

2.1 Taylor expansion at 0

Definition 2.

Let I be a real interval such that $0 \in I^{o}, f: I \rightarrow \mathbb{R}, n \in \mathbb{N}$. f has a serie expansion truncated of at order n at the neighborhood of 0 , denoted by $D L_{n}(0)$ if and only if there exists a real polynomial P_{n} of degree less or equal than n, such that :

$$
f(x)-P_{n}(x)=o\left(x^{n}\right)
$$

at the neighborhood of 0 .
A $D L_{n}(0)$ of f is written :

$$
\begin{gathered}
f(x)=P_{n}(x)+o\left(x^{n}\right) \\
f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}+o\left(x^{n}\right)
\end{gathered}
$$

Remark 1.

Whatever is the situation, the little $o()$ is an "abstract" quantity which tends to 0 as x approaches 0 . We won't compute $o() . o()$, this is the error term when we approximate $f(x)$ by $P_{n}(x)$.

Proposition 2.

This polynomial P_{n} in the Taylor expansion $D L_{n}(0)$ of f is UNIQUE. and denoted by $[f]_{n}$.

Example 2.

Find $D L_{2}(0)$ of $f(x)=1+3 x-5 x^{2}+12 x^{3}+5 x^{4}$
部 Video : example 2

Proposition 3.

If f is even (respectively odd) then $[f]_{n}$ is even (respectively odd).

2.2 Taylor expansion and differentiable functions

Theorem 4 (Mac-Laurin).
Let's assume that $n \geqslant 1$. If $f \in \mathcal{C}^{n-1}(I)$, such that $f^{(n)}(0)$ exists, f has a $D L_{n}(0)$ given by its Mac-Laurin serie

$$
\begin{gathered}
f(x)=\sum_{k=0}^{n}\left[\frac{f^{(k)}(0)}{k!} x^{k}\right]+o\left(x^{n}\right) \\
=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots+\frac{f^{(n)}(0)}{n!} x^{n}+o\left(x^{n}\right)
\end{gathered}
$$

Remark 2.

1. f has an expansion $D L_{0}(0)$, iif f is continuous at 0 . Then

$$
\forall x \in I, f(x)=f(0)+o(1)
$$

2. f has an expansion $D L_{1}(0)$ iif f is differentiable at 0 . Then

$$
\forall x \in I, f(x)=f(0)+x f^{\prime}(0)+o(x)
$$

3. there exists functions that do not satisfy Taylor Young's theorem but that get an expansion for $n \geqslant 2$

Example 3.

Let f be the function defined by $f(x)=\left\{\begin{array}{l}x^{3} \sin \frac{1}{x} \text { si } x \neq 0 \\ 0 \text { si } x=0\end{array}\right.$
Prove that f has an expansion $D L_{2}(0)$, but the second order derivative of f does not exist at 0.

Video : example 3

2.3 Common Taylor serie

$$
\begin{aligned}
& e^{x}= \\
& \cos x= \\
& \sin x= \\
& \operatorname{ch} x= \\
& \operatorname{sh} x= \\
& (1+x)^{\alpha}= \\
& \frac{1}{1+x}= \\
& \frac{1}{1-x}=
\end{aligned}
$$

前 Video : for the exponential function
Video: for the sine and the cosine
Video : for the hyperbolic sine and the hyperbolic cosine

* Video : other functions

2.4 Operations on taylor expansions

1. Linear combination

Let f and g be two functions of $\mathcal{F}(I, \mathbb{R})$ and $\lambda \in \mathbb{R}$. We assume that both f and g get Taylor series $D L_{n}(0)$ then $f+\lambda g$ has a Taylor expansion $D L_{n}(0)$ and $:[f+\lambda g]_{n}=$ $[f]_{n}+\lambda[g]_{n}$.
2. Multiplication

Let f and g be two functions $\mathcal{F}(I, \mathbb{R})$. We assume that both f and g get series expansions $D L_{n}(0)$ then $f . g$ has a series expansion $D L_{n}(0)$ and we get : $[f . g]_{n}=\left[[f]_{n} .[g]_{n}\right]_{n}$.

Example 4.

(a) Give $D L_{3}(0)$ of $\frac{e^{x}}{1+x}$
(b) Give $D L_{n}(0)$ of $\frac{1}{(1-x)^{2}}$
, Video : example 4 a)
5ideo : example 4 b)

3. Composition

Let f be a function of $\mathcal{F}(I, \mathbb{R})$ and g a function $\mathcal{F}(J, \mathbb{R})$ such that $f(I) \subset J$. We assume that $f(0)=0$ then $g \circ f$ has a series expansion $D L_{n}(0)$ and we get : $[g \circ f]_{n}=[g]_{n} \circ[f]_{n}$.

Example 5.

Give $D L_{4}(0)$ of $f(x)=e^{\cos x}$
湴Video: example 5
4. The inverse

Let g be a function of $\mathcal{F}(I, \mathbb{R})$ getting a series expansion $D L_{n}(0)$ such that $g(0) \neq 0$

INSTIUU Nation
DES SCIENCES
CENTRE VAL DE LOIRE
then $\frac{1}{g}$ has a series expansion $D L_{n}(0)$ get by increasing power order. The division by increasing power order is useful to compute series expansion.

Example 6.

Give $D L_{5}(0)$ of $f(x)=\frac{1}{\operatorname{ch} x}$
\% Video : example 6

5. The division

Let f and g be two functions of $\mathcal{F}(I, \mathbb{R})$. We assume that f and g get series expansions $D L_{n}(0)$ such that $g(0) \neq 0$ then $\frac{f}{g}$ has a series expansion $D L_{n}(0)$ get using a division by increasing power.

Example 7.

Give $D L_{5}(0)$ of $f(x)=\tan x$
鬲 Video : example 7

2.5 Integration

Let $f \in \mathcal{C}^{0}(I)$ having a series expansion $D L_{n}(0)$ given by $f(x)=\sum_{k=0}^{n}\left[\frac{f^{(k)}(0)}{k!} x^{k}\right]+o\left(x^{n}\right)$. Then all antiderivative F of f has a serie expansion on $I D L_{n+1}(0)$ given by :

$$
F(x)=F(0)+\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} \frac{x^{k+1}}{k+1}+o\left(x^{n+1}\right)
$$

The simplest method is to integrate "term by term" the series expansion $D L_{n}(0)$ of f and to add the constant $F(0)$ Thus we have

$$
\begin{aligned}
& \ln (1+x)=\sum_{k=1}^{n}(-1)^{k-1} \frac{x^{k}}{k}+o\left(x^{n}\right)=x-\frac{x^{2}}{2}+\cdots+(-1)^{n+1} \frac{x^{n}}{n}+o\left(x^{n}\right) \\
& \text { Arctan } x=\sum_{k=0}^{n}(-1)^{k} \frac{x^{2 k+1}}{2 k+1}+o\left(x^{2 n+2}\right) \\
& \text { Video : example }
\end{aligned}
$$

INSTIUT NAIONAL
DES SCIENCES
APPUOUESS
APPLITUEES
CENTR VAL DE LOIRE

Example 8. On your own
Give the $D L_{3}(0)$ of $\operatorname{Arcsin} x$

2.6 Derivative

Let $f \in \mathcal{C}^{0}(I)$ be a function getting a series expansion $D L_{n}(0): f(x)=\sum_{k=0}^{n}\left[\frac{f^{(k)}(0)}{k!} x^{k}\right]+o\left(x^{n}\right)$.
Then the series expansion $D L_{n-1}(0)$ of f^{\prime}, if it exists is given by :

$$
f^{\prime}(x)=\sum_{k=1}^{n} \frac{1}{(k-1)!} f^{(k)}(0) x^{k-1}+o\left(x^{n-1}\right)
$$

Example 9. On your own
Prove that the derivative f^{\prime} of the function : $f(x)=\left\{\begin{array}{l}x^{2} \sin \frac{1}{x} \text { si } x \neq 0 \\ 0 \text { si } x=0\end{array}\right.$ has no expansion at $0 D L_{0}(0)$ whereas f has an expansion $D L_{1}(0)$

2.7 Series expansions at the neighborhood of a

Definition 3.

f has a serie expansion truncated at order n at the neighborhood of a, denoted by $D L_{n}(a)$ if and only if there exist a real polynomial P_{n} of degree less or equal than n, such that : $f(x)-P_{n}(x-a)=o\left((x-a)^{n}\right)$ at the neighborhood of a.
The expansion $D L_{n}(a)$ of f is written :

$$
\begin{gathered}
f(x)=P_{n}(x-a)+o\left((x-a)^{n}\right) \\
=a_{0}+a_{1}(x-a)+\cdots+a_{n}(x-a)^{n}+o\left((x-a)^{n}\right)
\end{gathered}
$$

Remark 3.

In practice using a change of variables we will compute a series expansion $D L_{n}(0)$ at 0 . To find the expansion $D L_{n}(a)$ of $f(x)$ we set $h=x-a \Leftrightarrow x=a+h$ and thus will compute an expansion in h at 0 .

Example 10.

Find the serie expansion truncated at 3 of $f(x)=\sin (x)$ at $\frac{\pi}{2}$.
Careful : a serie expansion $D L_{n}(a)$ is a polynomial expression in $x-a$. We won't developp powers of $x-a$.

Taylor Mac-Laurin's formula is a particular case of the following formula true for any real number a :

Theorem 5 (Taylor-Young formula).
Let's assume that $n \geqslant 1$. Let $f \in \mathcal{C}^{n-1}(I)$, such that its n-th order derivative $f^{(n)}(a)$ exists. Then f has a series expansion $D L_{n}(a)$ given by Taylor-Young formula :

$$
\begin{gathered}
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}+o\left((x-a)^{n}\right) \\
=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+o\left((x-a)^{n}\right)
\end{gathered}
$$

3 Asymptotic expansions

Definition 4.

f has an expansion truncated at order n in the neighborhood of $+\infty$ (respectively $-\infty$), called an asymptotic expansion of f and denoted by $D L_{n}(+\infty)$ (respectively $D L_{n}(-\infty)$ if and only if there exists a polynomial E and a polynomial P_{n} of degree less or equal tahn n, such that: $f(x)-\left(E(x)+P_{n}\left(\frac{1}{x}\right)\right)=o\left(\frac{1}{x^{n}}\right)$ in the neighborhood of $+\infty$ (respectively $\left.-\infty\right)$.
An asymptotic expansion, that is to say a $D L_{n}(\pm \infty)$ of f is written :
$f(x)=E(x)+P_{n}\left(\frac{1}{x}\right)+o\left(\frac{1}{x^{n}}\right)=E(x)+\frac{a_{1}}{x}+\cdots+\frac{a_{n}}{x^{n}}+o\left(\frac{1}{x^{n}}\right)$.
We set a change of variables $x=\frac{1}{t}$ which means $t=\frac{1}{x}$. Then we look for an expansion $D L_{n}(0)$, then we go back to $f(x)$.

Example 11.

Find the asymptotic expansion at $+\infty$ truncated at order 2 of $f(x)=\sqrt{x^{2}+5 x+1}$

4 Equivalence

Definition 5.

Let f and f be two functions $\mathcal{F}(I, \mathbb{R}) . f$ is asymptotically equivalent to g in the neighborhood of a where $a \in[-\infty,+\infty]$, if and only if : $f-g=o(g)$ in the neighborhood of a. We denote $f \underset{a}{\sim} g$ ou $f(x) \underset{x \rightarrow a}{\sim} g(x)$.

Proposition 6 (Fundamental Characterisation).
If $g \neq 0$ in the neighborhood of a then we get :

$$
f \underset{a}{\sim} g \Leftrightarrow \frac{f(x)}{g(x)} \underset{x \rightarrow a}{\rightarrow}
$$

Example 12.

Find the following equivalents at 0 :

1. $e^{x} \sim 1+x$
2. $e^{x} \sim 1+2 x$
3. $e^{x}-1 \sim 2 x$

慈 Video : example

Remark 4.

From the preceding example, we note that the equivalent of a function is not unique. On the other hand, the equivalents can not be easily manipulated.

Proposition 7. If $f \sim g$ and $l \sim k$ in the neighborhood of a then $\lim _{x \rightarrow a} \frac{f}{l}=\lim _{x \rightarrow a} \frac{g}{k}$

4.1 Fundamental examples at 0

If f has a series expansion $D L_{n}(0)$ then $f \underset{0}{\sim}[f]_{n}$:
$e^{x}-1 \underset{0}{\sim}$
$\ln (1+x) \underset{0}{\sim}$
$(1+x)^{\alpha}{ }_{0}^{\sim}$
$\cos x \underset{0}{\sim}$
$\sin x \underset{0}{\sim}$
$\tan x \underset{0}{\sim}$
洷 Video : example

On your own
$\operatorname{sh} x \underset{0}{\sim}$
th $x \underset{0}{\sim}$
$\operatorname{Arcsin} x \sim$
$\operatorname{Arctan} x \sim$
$\operatorname{Argsh} x \underset{0}{\sim}$
$\operatorname{Argth} x \underset{0}{\sim}$

1. All non zero polynomial is asymptotically equivalent at $+\infty$ or $-\infty$ to its higher degree term.
2. All non zero polynomial is asymptotically equivalent at 0 to its lower degree term.
3. All non zero rational fraction is asymptotically equivalent at $+\infty$ or $-\infty$, to the quotient of its higher degree terms.
4. All non zero rational fraction is asymptotically equivalent a 0 , to the quotient of its lower degree terms.

It is possible to MULTIPLY equivalents, however it is forbidden to add them.

5 Applications

5．1 Applications of series and asymptotic expansions

Here is a list of the main applications ：
1．To compute a limit．
2．To find the equation of a tangent at a point
If f has a serie expansion $D L_{n}(a)$ of the shape $f(x)=a_{0}+a_{1}(x-a)+a_{2}(x-a)^{2}+$ $\cdots+a_{n}(x-a)^{n}+o\left((x-a)^{n}\right)$ then $y=a_{0}+a_{1}(x-a)$ is the equation of the tangent line at $(a, f(a))$ and its position is given by the sign of the first non zero element following $a_{1}(x-a)$ ．

Example 13.

Compute $\lim _{x \rightarrow 0} \frac{x(1+\cos x)-2 \tan x}{2 x-\sin x-\tan x}$
结 Video ：example
䍏 Video ：example
On your own，prepare exercise 6）1），2），3）．

Example 14.

Give the equation of the tangent line at 1 for the function Arctanx and give its position．
畐 Video ：example

5．2 Asymptotic expansions and asymptotic behaviour

Asymptotic equation．

Using a change of variables，by setting $x=\frac{1}{t}$ meaning $t=\frac{1}{x}$ ．We are looking for an expansion $D L_{n}(0)$ and then go back to $f(x)$ ．If f has an expansion $D L_{n}(\pm \infty)$ of the shape ：$f(x)=$ $a_{0} x+a_{1}+\frac{a_{p}}{x^{p}}+o\left(\frac{1}{x^{p}}\right)$ then $y=a_{0} x+a_{1}$ is an oblique asymptote for f en $\pm \infty$ ．The sign of $\frac{a_{p}}{x^{p}}$ gives the position of the graph to the asymptote．

Example 15.

Find the equation of the oblique asymptote at the graph $y=\sqrt{\frac{x^{3}}{x-1}}$ and give the position of the graph to the asymptote．

Video ：example

Exercises

Exercise 1.

Give the $D L_{3}(0)$ of those fuunctions :

1. $f(x)=\sin x+\cos x$
2. $b(x)=\sin x \ln (1+x)$
3. $g(x)=e^{2 x}$
4. $h(x)=x \ln (x+1)-x$
5. $a(x)=\frac{x^{2}+1}{x^{2}+2 x+2}$
6. $i(x)=\frac{\sin x}{x}$
7. $j(x)=\frac{\sqrt{x+1}-1}{x}$
8. $k(x)=\ln (1+\sin x)$
9. $l(x)=\frac{\arcsin x}{\sqrt{1-x^{2}}}$
10. $c(x)=\ln \left(\frac{1}{\cos x}\right)$
11. $m(x)=\frac{1}{x}-\frac{1}{\sin x}$
12. $n(x)=\sqrt[3]{1+x}$ and $o(x)=\sqrt[3]{1-x^{2}}$

Exercise 2.

Let $f(x)=\left\{\begin{array}{l}\left(1+x^{2}\right)+x^{2} \varepsilon(x) \text { si } x \neq 0 \\ 1 \text { si } x=0\end{array}\right.$,
where $\varepsilon(x)=x \sin \frac{1}{x}$.
Show that f amits a $D L_{2}(0)$ that does not comes from Mac-Laurin formula.

Exercise 3.

Give a $D L_{3}(1)$ of $f(x)=\sqrt{x}$

Exercise 4.

Give a $D L_{3}(+\infty)$ of

1. $f(x)=\sqrt[3]{x^{3}+1}-(x+1)$
2. $g(x)=\frac{x^{3}+2}{x-1}$

Exercise 5.

1. Give a $D L_{2}(+\infty)$ of $\frac{x+1}{x+2}$
2. Give a $D L_{2}(+\infty)$ of $\sqrt{\frac{x+1}{x+2}}$
3. Give a $D L_{2}(0)$ of $\operatorname{Arctan} x$
4. Give a $D L_{2}(+\infty)$ of $\operatorname{Arctan}\left(\sqrt{\frac{x+1}{x+2}}-1\right)$

Exercise 6.

Find those limits at 0 using a $D L_{n}(0)$:

1. $f(x)=\frac{\sin x-x \cos x}{x(1-\cos x)}$
2. $f(x)=\frac{\sin x-\tan x}{x^{3}}$
3. $f(x)=\frac{1}{x^{2}}-\frac{1}{\sin ^{2} x}$
4. $f(x)=\frac{1}{x}-\frac{1}{\ln (1+x)}$
5. $f(x)=\frac{1}{x}\left(\frac{1}{\operatorname{th} x}-\frac{1}{\tan x}\right)$
6. $f(x)=\frac{1}{x} \ln \left(\frac{e^{x}-1}{x}\right)$
7. $f(x)=\frac{\cos x}{\ln (1+x)}$

Exercise 7.

Find those limits at 1 using a $D L_{n}(1)$:

1. $f(x)=\frac{1}{\ln x}-\frac{x}{\ln x}$
2. $f(x)=\frac{1-x+\ln x}{1-\sqrt{2 x-x^{2}}}$
3. $f(x)=\frac{e^{x}-e^{1 / x}}{x^{2}-1}$

Exercise 8.

1. Give the asymptotic expansion of order 3 for $\ln x-\ln (x-1)$.
2. Deduce this limit : $\lim _{x \rightarrow+\infty} \frac{1}{e^{x}}\left(\frac{x}{x-1}\right)^{x^{2}}$

Exercise 9.

Calculate this limit: $\lim _{x \rightarrow+\infty}\left(1+\frac{1}{x}\right)^{x}$

Exercise 10.

Give equations of the tangent lines at 0 , as well as the relative position of the curve and its tangent line in the neighborhood of 0

1. $f(x)=\frac{\sin (x)}{x}$
2. $g(x)=\frac{e^{x}-1-x}{x \sin (x)}$

Exercise 11.

Using Taylor expansions at infinity, determine the equation of the asymptotes to those graphs :

1. $y=\sqrt{x^{2}+4 x-5}$
2. $y=x^{2} \ln \left(\frac{x-1}{x}\right)$
3. $y=e^{-\frac{1}{x}} \sqrt{x^{2}+1}$

Exercise 12.

Give equivalents for :

1. $\ln x$ at 1.
2. $\ln ^{4}(1+x)$ at 0 .
3. $\frac{\sin x}{x}$ at 0 .
4. $\frac{x^{2}+3}{x^{4}+2}$ at $+\infty$.
5. $\frac{e^{-x}+2}{x^{2}+x^{4}}$ at $+\infty$.
