

# Taylor expansions

Objectifs

- Know common Taylor expansions.
- Calculate taylor expansions by different techniques.
- Know when to apply taylor expansions.

Throughout this chapter, I represents any interval of  $\mathbb{R}$ .  $\mathcal{F}(I,\mathbb{R})$  represents the set of functions defined from I to  $\mathbb{R}$ .

## 1 Little o notation

### Definition 1.

Let I be a real interval and a a real.  $a \in \mathbb{R}$  or a is an endpoint of I. Let f and g be two functions of  $\mathcal{F}(I,\mathbb{R})$ . f is a little "o" of g at the neighborhood of a where  $a \in [-\infty, +\infty]$ , if and only if :

- 1. Case  $a \in \mathbb{R}$ :  $\forall \varepsilon > 0, \exists \alpha > 0, \forall x \in I, |x a| \leq \alpha \Rightarrow |f(x)| \leq \varepsilon |g(x)|$
- 2. Case  $a = +\infty$ :  $\forall \varepsilon > 0, \exists A \in \mathbb{R}, \forall x \in I, x \ge A \Rightarrow |f(x)| \le \varepsilon |g(x)|$
- 3. Case  $a = -\infty$ :  $\forall \varepsilon > 0, \exists A \in \mathbb{R}, \forall x \in I, x \leq A \Rightarrow |f(x)| \leq \varepsilon |g(x)|$

 $f(x) = \underset{x \to a}{o}(g(x))$ 

we write f(x) = o(g(x)) (*f* is little-o of *g*) or if there is no confusion f = o(g). We also say that f(x) is infinitely small with respect to g(x) at the neighborhood of *a*.

Proposition 1 (Characterization).

The following sentences are equivalent :

1. 
$$f(x) = o\left(g(x)\right)$$

2. If  $g \neq 0$  at the neighborhood a,  $\frac{f(x)}{g(x)} \xrightarrow[x \to a]{} 0$ 

3. There exists a function  $\varepsilon$  such that  $f(x) = g(x)\varepsilon(x)$  avec  $\varepsilon(x) \xrightarrow[x \to a]{} 0$  at neighborhood of a.

#### Example 1.

- 1. Find all natural numbers n such that  $\frac{x^3}{1+x^2} = o(x^n)$  at the neighborhood of 0.
- 2. Let f be a function such that  $f(x) = o(x^3)$  at the neighborhood of 0. Find natural numbers n such that  $\frac{f(x)}{x} = o(x^n)$ .

₩ Video : example 1



We get properties for "o", like the comparative growth theorem : en  $+\infty$ :  $x^{\alpha} = o(x^{\beta})$  ssi  $\alpha < \beta$ ,  $x^{\alpha} = o(e^{x})$ ,  $\ln x = o(x^{\beta})$ en  $0^{+}$ :  $x^{\beta} = o(x^{\alpha})$  ssi  $\alpha < \beta$ ,  $\ln x = o\left(\frac{1}{x^{\alpha}}\right)$ 

# 2 Taylor expansion

In the following, n denotes a integers and  $a \in \mathbb{R}$ 

## **2.1** Taylor expansion at 0

### Definition 2.

Let I be a real interval such that  $0 \in I^o$ ,  $f: I \to \mathbb{R}$ ,  $n \in \mathbb{N}$ . f has a serie expansion truncated of at order n at the neighborhood of 0, denoted by  $DL_n(0)$  if and only if there exists a real polynomial  $P_n$  of degree less or equal than n, such that :

$$f(x) - P_n(x) = o(x^n)$$

at the neighborhood of 0. A  $DL_n(0)$  of f is written :

$$f(x) = P_n(x) + o(x^n)$$
$$f(x) = a_0 + a_1 x + \dots + a_n x^n + o(x^n)$$

### Remark 1.

Whatever is the situation, the little o() is an "abstract" quantity which tends to 0 as x approaches 0. We won't compute o(). o(), this is the error term when we approximate f(x) by  $P_n(x)$ .

### Proposition 2.

This polynomial  $P_n$  in the Taylor expansion  $DL_n(0)$  of f is UNIQUE, and denoted by  $[f]_n$ .

### Example 2.

Find  $DL_2(0)$  of  $f(x) = 1 + 3x - 5x^2 + 12x^3 + 5x^4$ Video : example 2

### Proposition 3.

If f is even (respectively odd) then  $[f]_n$  is even (respectively odd).

## 2.2 Taylor expansion and differentiable functions

#### Theorem 4 (Mac-Laurin).

Let's assume that  $n \ge 1$ . If  $f \in \mathcal{C}^{n-1}(I)$ , such that  $f^{(n)}(0)$  exists, f has a  $DL_n(0)$  given by its Mac-Laurin serie



$$f(x) = \sum_{k=0}^{n} \left[ \frac{f^{(k)}(0)}{k!} x^{k} \right] + o(x^{n})$$
$$= f(0) + f'(0)x + \frac{f''(0)}{2!} x^{2} + \dots + \frac{f^{(n)}(0)}{n!} x^{n} + o(x^{n})$$

### Remark 2.

1. f has an expansion  $DL_0(0)$ , iif f is continuous at 0. Then

$$\forall x \in I, f(x) = f(0) + o(1)$$

2. f has an expansion  $DL_1(0)$  iff f is differentiable at 0. Then

$$\forall x \in I, f(x) = f(0) + xf'(0) + o(x)$$

3. there exists functions that do not satisfy Taylor Young's theorem but that get an expansion for  $n \geqslant 2$ 

### Example 3.

Let f be the function defined by  $f(x) = \begin{cases} x^3 \sin \frac{1}{x} & si \ x \neq 0 \\ 0 & si \ x = 0 \end{cases}$ Prove that f has an expansion  $DL_2(0)$ , but the second order derivative of f does not exist at 0.

Video : example 3

## 2.3 Common Taylor serie

$$e^{x} = \cos x =$$
$$\sin x =$$
$$\cosh x =$$
$$(1+x)^{\alpha} =$$
$$\frac{1}{1+x} =$$
$$\frac{1}{1-x} =$$



- $\checkmark$  Video : for the exponential function
- $\checkmark$  Video : for the sine and the cosine
- i Video : for the hyperbolic sine and the hyperbolic cosine
- **W**ideo : other functions









## 2.4 Operations on taylor expansions

### 1. Linear combination

Let f and g be two functions of  $\mathcal{F}(I,\mathbb{R})$  and  $\lambda \in \mathbb{R}$ . We assume that both f and g get Taylor series  $DL_n(0)$  then  $f + \lambda g$  has a Taylor expansion  $DL_n(0)$  and  $: [f + \lambda g]_n = [f]_n + \lambda [g]_n$ .

### 2. Multiplication

Let f and g be two functions  $\mathcal{F}(I,\mathbb{R})$ . We assume that both f and g get series expansions  $DL_n(0)$  then f.g has a series expansion  $DL_n(0)$  and we get :  $[f.g]_n = [[f]_n \cdot [g]_n]_n$ .

Example 4.

(a) Give 
$$DL_3(0)$$
 of  $\frac{e^x}{1+x}$   
(b) Give  $DL_n(0)$  of  $\frac{1}{(1-x)^2}$   
 $\stackrel{\checkmark}{\longrightarrow}$  Video : example 4 a)  
 $\stackrel{\checkmark}{\longrightarrow}$  Video : example 4 b)

### 3. Composition

Let f be a function of  $\mathcal{F}(I,\mathbb{R})$  and g a function  $\mathcal{F}(J,\mathbb{R})$  such that  $f(I) \subset J$ . We assume that f(0) = 0 then  $g \circ f$  has a series expansion  $DL_n(0)$  and we get :  $[g \circ f]_n = [g]_n \circ [f]_n$ . Example 5.

Give  $DL_4(0)$  of  $f(x) = e^{\cos x}$  $\stackrel{\text{\tiny Cos}}{=} Video : example 5$ 

### 4. The inverse

Let g be a function of  $\mathcal{F}(I,\mathbb{R})$  getting a series expansion  $DL_n(0)$  such that  $g(0) \neq 0$ 



then  $\frac{1}{g}$  has a series expansion  $DL_n(0)$  get by increasing power order. The division by increasing power order is useful to compute series expansion.

## Example 6.

Give 
$$DL_5(0)$$
 of  $f(x) = \frac{1}{\operatorname{ch} x}$ 

Video : example 6

### 5. The division

Let f and g be two functions of  $\mathcal{F}(I, \mathbb{R})$ . We assume that f and g get series expansions  $DL_n(0)$  such that  $g(0) \neq 0$  then  $\frac{f}{g}$  has a series expansion  $DL_n(0)$  get using a division by increasing power.

Example 7.

Give  $DL_5(0)$  of  $f(x) = \tan x$  $\bigvee$  Video : example 7

## 2.5 Integration

Let  $f \in \mathcal{C}^0(I)$  having a series expansion  $DL_n(0)$  given by  $f(x) = \sum_{k=0}^n \left[\frac{f^{(k)}(0)}{k!}x^k\right] + o(x^n)$ . Then all antiderivative F of f has a serie expansion on I  $DL_{n+1}(0)$  given by :

$$F(x) = F(0) + \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} \frac{x^{k+1}}{k+1} + o(x^{n+1})$$

The simplest method is to integrate "term by term" the series expansion  $DL_n(0)$  of f and to add the constant F(0) Thus we have

$$\ln(1+x) = \sum_{\substack{k=1\\n}}^{n} (-1)^{k-1} \frac{x^k}{k} + o(x^n) = x - \frac{x^2}{2} + \dots + (-1)^{n+1} \frac{x^n}{n} + o(x^n)$$
  
Arctan  $x = \sum_{\substack{k=0\\k=0}}^{n} (-1)^k \frac{x^{2k+1}}{2k+1} + o(x^{2n+2})$   
**Wideo : example**





**Example 8.** On your own Give the  $DL_3(0)$  of Arcsin x

## 2.6 Derivative

Let  $f \in \mathcal{C}^0(I)$  be a function getting a series expansion  $DL_n(0) : f(x) = \sum_{k=0}^n \left[ \frac{f^{(k)}(0)}{k!} x^k \right] + o(x^n)$ . Then the series expansion  $DL_{n-1}(0)$  of f', **if it exists** is given by :

$$f'(x) = \sum_{k=1}^{n} \frac{1}{(k-1)!} f^{(k)}(0) x^{k-1} + o(x^{n-1})$$

Example 9. On your own

Prove that the derivative f' of the function :  $f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$  has no expansion at  $0 DL_0(0)$  whereas f has an expansion  $DL_1(0)$ 

## 2.7 Series expansions at the neighborhood of a

### Definition 3.

f has a serie expansion truncated at order n at the neighborhood of a, denoted by  $DL_n(a)$ if and only if there exist a real polynomial  $P_n$  of degree less or equal than n, such that :  $f(x) - P_n(x-a) = o((x-a)^n)$  at the neighborhood of a. The expansion  $DL_n(a)$  of f is written :

$$D D_n(a)$$
 of  $f$  is written .

$$f(x) = P_n(x-a) + o((x-a)^n)$$
  
=  $a_0 + a_1(x-a) + \dots + a_n(x-a)^n + o((x-a)^n)$ 



### Remark 3.

In practice using a change of variables we will compute a series expansion  $DL_n(0)$  at 0. To find the expansion  $DL_n(a)$  of f(x) we set  $h = x - a \Leftrightarrow x = a + h$  and thus will compute an expansion in h at 0.

## Example 10.

Find the serie expansion truncated at 3 of f(x) = sin(x) at  $\frac{\pi}{2}$ .

**Careful** : a serie expansion  $DL_n(a)$  is a polynomial expression in x - a. We won't developp powers of x - a.

Taylor Mac-Laurin's formula is a particular case of the following formula true for any real number a:

## Theorem 5 (Taylor-Young formula).

Let's assume that  $n \ge 1$ . Let  $f \in \mathcal{C}^{n-1}(I)$ , such that its n-th order derivative  $f^{(n)}(a)$  exists. Then f has a series expansion  $DL_n(a)$  given by Taylor-Young formula :

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + o((x-a)^{n})$$
$$= f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^{2} + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^{n} + o((x-a)^{n})$$

# 3 Asymptotic expansions

## Definition 4.

f has an expansion truncated at order n in the neighborhood of  $+\infty$  (respectively  $-\infty$ ), called an asymptotic expansion of f and denoted by  $DL_n(+\infty)$  (respectively  $DL_n(-\infty)$  if and only if there exists a polynomial E and a polynomial  $P_n$  of degree less or equal tahn n, such that :  $f(x) - \left(E(x) + P_n\left(\frac{1}{x}\right)\right) = o\left(\frac{1}{x^n}\right)$  in the neighborhood of  $+\infty$  (respectively  $-\infty$ ). An asymptotic expansion, that is to say a  $DL_n(\pm\infty)$  of f is written :  $f(x) = E(x) + P_n\left(\frac{1}{x}\right) + o\left(\frac{1}{x^n}\right) = E(x) + \frac{a_1}{x} + \dots + \frac{a_n}{x^n} + o\left(\frac{1}{x^n}\right)$ .

We set a change of variables  $x = \frac{1}{t}$  which means  $t = \frac{1}{x}$ . Then we look for an expansion  $DL_n(0)$ , then we go back to f(x).

## Example 11.

Find the asymptotic expansion at  $+\infty$  truncated at order 2 of  $f(x) = \sqrt{x^2 + 5x + 1}$ 

# 4 Equivalence

## Definition 5.

Let f and f be two functions  $\mathcal{F}(I,\mathbb{R})$ . f is asymptotically equivalent to g in the neighborhood of a where  $a \in [-\infty, +\infty]$ , if and only if f = f = o(g) in the neighborhood of a. We denote  $f \underset{a}{\sim} g$  ou  $f(x) \underset{x \to a}{\sim} g(x)$ .



**Proposition 6** (Fundamental Characterisation). If  $g \neq 0$  in the neighborhood of *a* then we get :

$$f \mathop{\sim}\limits_{a} g \Leftrightarrow \frac{f(x)}{g(x)} \mathop{\rightarrow}\limits_{x \to a} 1$$

## Example 12.

Find the following equivalents at 0 :

1.  $e^x \sim 1 + x$ 2.  $e^x \sim 1 + 2x$ 3.  $e^x - 1 \sim 2x$ Video : example

## Remark 4.

From the preceding example, we note that the equivalent of a function is not unique. On the other hand, the equivalents can not be easily manipulated.

**Proposition 7.** If  $f \sim g$  and  $l \sim k$  in the neighborhood of a then  $\lim_{x \to a} \frac{f}{l} = \lim_{x \to a} \frac{g}{k}$ 

## 4.1 Fundamental examples at 0

If f has a series expansion  $DL_n(0)$  then  $f \underset{0}{\sim} [f]_n$ :

| $e^x - 1 \underset{0}{\sim}$ | $\ln(1+x) \mathop{\sim}_0$ | $(1+x)^{\alpha} \underset{0}{\sim}$  |
|------------------------------|----------------------------|--------------------------------------|
| $\cos x \sim_0$              | $\sin x \sim_{_{0}}$       | $\tan x \mathop{\sim}\limits_{_{0}}$ |

Video : example

 $\begin{array}{ccc} On \ your \ own \\ \operatorname{sh} x \underset{0}{\sim} & \operatorname{th} x \underset{0}{\sim} & \operatorname{Arcsin} x \underset{0}{\sim} \\ \operatorname{Arctan} x \underset{0}{\sim} & \operatorname{Argsh} x \underset{0}{\sim} & \operatorname{Argth} x \underset{0}{\sim} \end{array}$ 

- 1. All non zero polynomial is asymptotically equivalent at  $+\infty$  or  $-\infty$  to its higher degree term.
- 2. All non zero polynomial is asymptotically equivalent at 0 to its lower degree term.
- 3. All non zero rational fraction is asymptotically equivalent at  $+\infty$  or  $-\infty$ , to the quotient of its higher degree terms.
- 4. All non zero rational fraction is asymptotically equivalent a 0, to the quotient of its lower degree terms.

It is possible to MULTIPLY equivalents, however it is forbidden to add them.



# 5 Applications

## 5.1 Applications of series and asymptotic expansions

Here is a list of the main applications :

- 1. To compute a limit.
- 2. To find the equation of a tangent at a point

If f has a serie expansion  $DL_n(a)$  of the shape  $f(x) = a_0 + a_1(x-a) + a_2(x-a)^2 + \cdots + a_n(x-a)^n + o((x-a)^n)$  then  $y = a_0 + a_1(x-a)$  is the equation of the tangent line at (a, f(a)) and its position is given by the sign of the first non zero element following  $a_1(x-a)$ .

### Example 13.

Compute  $\lim_{x\to 0} \frac{x(1+\cos x)-2\tan x}{2x-\sin x-\tan x}$   $\stackrel{\checkmark}{\longrightarrow}$  Video : example  $\stackrel{\checkmark}{\longrightarrow}$  Video : example On your own, prepare exercise 6) 1),2),3).

### Example 14.

Give the equation of the tangent line at 1 for the function Arctanx and give its position.  $\forall Video : example$ 

## 5.2 Asymptotic expansions and asymptotic behaviour

## Asymptotic equation.

Using a change of variables, by setting  $x = \frac{1}{t}$  meaning  $t = \frac{1}{x}$ . We are looking for an expansion  $DL_n(0)$  and then go back to f(x). If f has an expansion  $DL_n(\pm\infty)$  of the shape :  $f(x) = a_0x + a_1 + \frac{a_p}{x^p} + o\left(\frac{1}{x^p}\right)$  then  $y = a_0x + a_1$  is an oblique asymptote for f en  $\pm\infty$ . The sign of  $\frac{a_p}{x^p}$  gives the position of the graph to the asymptote.

## Example 15.

Find the equation of the oblique asymptote at the graph  $y = \sqrt{\frac{x^3}{x-1}}$  and give the position of the graph to the asymptote.

🖤 Video : example



# Exercises

## Exercise 1.

Give the  $DL_3(0)$  of those functions :

1. 
$$f(x) = \sin x + \cos x$$
  
2.  $b(x) = \sin x \ln(1+x)$   
3.  $g(x) = e^{2x}$   
4.  $h(x) = x \ln(x+1) - x$   
5.  $a(x) = \frac{x^2 + 1}{x^2 + 2x + 2}$   
6.  $i(x) = \frac{\sin x}{x}$   
7.  $j(x) = \frac{\sqrt{x+1} - 1}{x}$ 

8. 
$$k(x) = \ln(1 + \sin x)$$
  
9.  $l(x) = \frac{\arcsin x}{\sqrt{1 - x^2}}$   
10.  $c(x) = \ln\left(\frac{1}{\cos x}\right)$   
11.  $m(x) = \frac{1}{x} - \frac{1}{\sin x}$   
12.  $n(x) = \sqrt[3]{1 + x}$  and  $o(x) = \sqrt[3]{1 - x^2}$ 

Exercise 2. Let  $f(x) = \begin{cases} (1+x^2) + x^2 \varepsilon(x) & \text{si } x \neq 0 \\ 1 & \text{si } x = 0 \\ 1 \end{cases}$ ,

where  $\varepsilon(x) = x \sin \frac{1}{x}$ . Show that f amits a  $DL_2(0)$  that does not comes from Mac-Laurin formula.

### Exercise 3.

Give a  $DL_3(1)$  of  $f(x) = \sqrt{x}$ 

## Exercise 4.

Give a 
$$DL_3(+\infty)$$
 of  
1.  $f(x) = \sqrt[3]{x^3 + 1} - (x + 1)$   
2.  $g(x) = \frac{x^3 + 2}{x - 1}$ 

### Exercise 5.

1. Give a 
$$DL_2(+\infty)$$
 of  $\frac{x+1}{x+2}$   
2. Give a  $DL_2(+\infty)$  of  $\sqrt{\frac{x+1}{x+2}}$   
3. Give a  $DL_2(0)$  of Arctan  $x$   
4. Give a  $DL_2(+\infty)$  of  $\operatorname{Arctan}\left(\sqrt{\frac{x+1}{x+2}}-1\right)$ 

Find those limits at 0 using a  $DL_n(0)$ :

1. 
$$f(x) = \frac{\sin x - x \cos x}{x(1 - \cos x)}$$
 2.

2. 
$$f(x) = \frac{\sin x - \tan x}{x^3}$$
  
3.  $f(x) = \frac{1}{x^2} - \frac{1}{\sin^2 x}$ 





4. 
$$f(x) = \frac{1}{x} - \frac{1}{\ln(1+x)}$$
  
5.  $f(x) = \frac{1}{x} \left( \frac{1}{\tan x} - \frac{1}{\tan x} \right)$ 
7

6. 
$$f(x) = \frac{1}{x} \ln\left(\frac{e^x - 1}{x}\right)$$
  
7. 
$$f(x) = \frac{\cos x}{\ln\left(1 + x\right)}$$

#### Exercise 7.

Find those limits at 1 using a  $DL_n(1)$ :

1. 
$$f(x) = \frac{1}{\ln x} - \frac{x}{\ln x}$$
  
2.  $f(x) = \frac{1 - x + \ln x}{1 - \sqrt{2x - x^2}}$   
3.  $f(x) = \frac{e^x - e^{1/x}}{x^2 - 1}$ 

### Exercise 8.

- 1. Give the asymptotic expansion of order 3 for  $\ln x \ln(x-1)$ .
- 2. Deduce this limit :  $\lim_{x \to +\infty} \frac{1}{e^x} \left(\frac{x}{x-1}\right)^{x^2}$

### Exercise 9.

Calculate this limit :  $\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x$ 

#### Exercise 10.

Give equations of the tangent lines at 0, as well as the relative position of the curve and its tangent line in the neighborhood of 0

1. 
$$f(x) = \frac{\sin(x)}{x}$$
  
2. 
$$g(x) = \frac{e^x - 1 - x}{x\sin(x)}$$

#### Exercise 11.

Using Taylor expansions at infinity, determine the equation of the asymptotes to those graphs :

1. 
$$y = \sqrt{x^2 + 4x - 5}$$
  
2.  $y = x^2 \ln\left(\frac{x - 1}{x}\right)$   
3.  $y = e^{-\frac{1}{x}}\sqrt{x^2 + 1}$ 

## Exercise 12.

Give equivalents for :

1. 
$$\ln x$$
 at 1.  
2.  $\ln^4 (1+x)$  at 0.  
3.  $\frac{\sin x}{x}$  at 0.  
5.  $\frac{e^{-x}+2}{x^2+x^4}$  at  $+\infty$ .