LINEAR MAPS

Objectifs

- Define linear maps.
 - understand image and kernel of a linear map.
 - work on linear maps in finite dimension.

In this chapter we use \mathbb{K} wich represents either \mathbb{R} or \mathbb{C}.

1 Generalities

Definition 1.

Let E and E^{\prime} be two K vector spaces. Let f be a map from E to $E^{\prime} . f$ is a linear map (or a module homomorphism) if and only if it checks those properties :
(i) $\forall x, y \in E, f(x+y)=f(x)+f(y)$
(ii) $\forall x \in E, \forall \lambda \in K, f(\lambda \cdot x)=\lambda \cdot f(x)$

This means that f matches the structure of K vector space of E to E^{\prime}.

Example 1.

Are the following maps linear?

1. Let E be \mathbb{K} vector space and $k \in \mathbb{K}$. The mapping from E into $E: x \mapsto k \cdot x$ is called homothety of factor k.
2. The mapping from \mathbb{R} into \mathbb{R} such that $x \mapsto x^{2}$.

Property 1.

If f is a linear mapping from E into E^{\prime} then $f\left(0_{E}\right)=0_{E^{\prime}}$.

Example 2.

1. Prove that property.
2. Is the converse true?

Remark 1.

To show that a mapping is not linear, we can use the contraposition of the previous property, namely, if we have $f\left(0_{E}\right) \neq 0_{E^{\prime}}$ then f is not linear.

Theorem 1 (Practical Theorem).
Let f be a map from E to E^{\prime}, two K vector spaces.
f is a linear map if and only if $\forall x, y \in E, \forall \alpha \in K$:

$$
f(\alpha x+y)=\alpha f(x)+f(y)
$$

Example 3.

1. Is the mapping from \mathbb{R}^{2} into \mathbb{R}^{3}, defined by $(x, y) \mapsto(x-y, 0, y)$ a linear mapping?
2. Prove the previous theorem.

Definition 2.

Let E be a vector space of K. A linear form on E is a linear map from the vector space E to its field of scalars K.

Example 4.

Are those maps linear forms?

1. The map from \mathbb{R}^{2} to \mathbb{R}^{2} which maps (x, y) to $2(x, y)$.
2. The map from \mathbb{R}^{2} to \mathbb{R} which maps (x, y) to $x^{2}+y^{2}$.
3. $f \mapsto \int_{0}^{1} f(t) d t$ where $f \in \mathcal{C}^{0}([0,1])$

2 Operations on linear maps

Definition 3.

We denote $\mathcal{L}\left(E, E^{\prime}\right)$ the set of linear maps of the vector-space E over K in the dans vector space E^{\prime} over K.

Theorem 2.

Let f, g be two linear maps from E into E^{\prime} and $k \in \mathbb{K}$. Then $f+g$ and $k f$ are linear maps from E into E^{\prime}.

Proposition 3. $\mathcal{L}\left(E, E^{\prime}\right)$ is a vector space over K, as a sub-space of the vectoriel space of maps between E to E^{\prime}.

Proposition 4. The composition of two linear maps is a linear map.
Example 5.
Prove the following theorem.

3 Endomorphisms

Definition 4.

Let E be a vector space over K. An endomorphism of E is a linear map from E to itself. We denote by $\mathcal{L}(E)$ the set of endomorphisms of E

Remark 2.

For endomorphisms, we use this noattion : $f \circ f \circ f=f^{3}$.

Example 6.

Why f^{2} has no meaning if f is the linear map from \mathbb{R}^{2} to \mathbb{R} defined by $f(x, y)=x$?

4 Isomorphisms and automorphisms

Definition 5.

Let f be a linear map from E to E^{\prime} two vector spaces over \mathbb{K}.

1. f is an isomorphism if and only if f is bijective.
2. f is an automorphism if and only if f is an endomorphism and is bijective, so is both an endomorphism and an isomorphism.

Theorem 5.

The inverse of an isomorphism is an isomorphism.

Example 7.

- Is the vectoriel homothety of E of factor k an automorphism? If yes, give its inverse.
- Is this map $(x, y) \mapsto x+i y$ an isomorphism between \mathbb{R}^{2} and \mathbb{C} ? An automorphism?
- Prove the previous theorem.

5 Kernel and image (or range)

5.1 Kernel

Example 8.

Let f be a linear map.
We already know that $f\left(0_{E}\right)=0_{E^{\prime}}$.

1. Is it possible to find other vectors u such that $f(u)=0_{E^{\prime}}$?
2. Prove that f is injective if and only if 0_{E} is the only vector u of E satisfying $f(u)=0_{E^{\prime}}$.

Definition 6.

Let E and E^{\prime} be two vector spaces over K and let f be a linear map from E to E^{\prime}. The kernel of f is the set :

$$
\operatorname{Ker} f=f^{-1}\left(\left\{0_{E^{\prime}}\right\}\right)=\left\{x \in E / f(x)=0_{E^{\prime}}\right\}
$$

Example 9.

1. Let's consider $u: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2},(x, y, z) \mapsto(y, x+y+z)$. Find the kernel of u.
2. Let's consider $u: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},(x, y) \mapsto(2 x-y, x+2 y, x+y)$. Find the kernel of u.

Theorem 6.

The kernel of a linear map from E to E^{\prime} is a vector sub-space of E.

Example 10.

Prove the previoud theorem.
From the previous example, we deduce the following theorem :

Theorem 7.

Let f be a linear map from E to E^{\prime} then f is injective if and only if: $\operatorname{Ker} f=\left\{0_{E}\right\}$

5.2 Image

Definition 7.

Let E and E^{\prime} be two vector spaces over K and f a linear map from E to E^{\prime}. The image (or range) is the set :

$$
\operatorname{Im} f=f(E)=\{f(x) / x \in E\}
$$

Example 11.

Find the image of the following linear maps :

1. Soit $u: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2},(x, y, z) \mapsto(y, x+y+z)$.
2. Soit $u: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},(x, y) \mapsto(2 x-y, x+2 y, x+y)$.

Theorem 8.

The image of a linear map from E to E^{\prime} is a vcetor sub-space of E^{\prime}.

Example 12.

Prove the previous theorem.

Theorem 9.

Let E and E^{\prime} be two vector spaces over K and $f: E \rightarrow E^{\prime}$ a linear map.
If $S=\left(e_{1}, \ldots, e_{p}\right)$ is a spanning set of E, which means $E=V \operatorname{ect}\left(e_{1}, \ldots, e_{p}\right)$ then $S^{\prime}=$ $\left(f\left(e_{1}\right), \ldots, f\left(e_{p}\right)\right)$ is a spanning set of Imf.

Remark 3.

This theorem allows to find the image of $f \operatorname{Im} f$ using only a spanning set of E.

Example 13.

1. With the previous theorem, find the image of the following linear maps:
(a) Soit $u: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2},(x, y, z) \mapsto(y, x+y+z)$.
(b) Soit $u: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},(x, y) \mapsto(2 x-y, x+2 y, x+y)$.
2. Prove the previous theorem.

6 Linear maps in finite dimension

6.1 Linear maps and family of vectors

Theorem 10.

Let E and E^{\prime} be two vectr spaces ove K and $f: E \rightarrow E^{\prime}$ a linear map.

1. f is injective \Leftrightarrow the image under f of any linearly independent family of vectors of E is a linearly independent of E^{\prime} : let $B=\left(e_{1}, \ldots, e_{p}\right)$ be a linearly independent family of vectors of E, f is injective $\Leftrightarrow\left(f\left(e_{1}\right), \ldots, f\left(e_{p}\right)\right)$ is also a linearly independent family of vectors of E^{\prime}.
2. f is surjective \Leftrightarrow the image under f of all spanning set of E is a spanning set of E^{\prime} which means : let $B=\left(e_{1}, \ldots, e_{p}\right)$ be any spanning set of E, f is surjective $\Leftrightarrow\left(f\left(e_{1}\right), \ldots, f\left(e_{p}\right)\right)$ is a spanning set of E^{\prime}.
3. f is bijective \Leftrightarrow the image under f of any basis of E is a basis of E^{\prime} which means : let $B=\left(e_{1}, \ldots, e_{p}\right)$ be a basis of E, f is bijective $\Leftrightarrow\left(f\left(e_{1}\right), \ldots, f\left(e_{p}\right)\right)$ is also a basis of E^{\prime}.

6.2 Rank nullity theorem

Theorem 11.

Let f be a linear map from E to E^{\prime}, then :

$$
\operatorname{dim} \operatorname{Ker} f+\operatorname{dim} \Im m f=\operatorname{dim} E
$$

Remark 4.

1. Let's denote that $\operatorname{dimImf} \leqslant \operatorname{dim} E$
2. Due to the rank nullity theorem the dimension of the codomain has no influence

Example 14.

Write the rank nullity theorem for this map $u: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(x, y) \mapsto(0, x+y)$.

Example 15.

Prove the rank nullity theorem.

6.3 Rank for a linear map

Definition 8.

Let E and E^{\prime} be two finite dimensional \mathbb{K} vector spaces and f a linear map from E to E^{\prime}. We call rank of f the dimension of $\Im m f$.

Remark 5.

Thus, the theorem of rank is also written $: \operatorname{rg}(f)=\operatorname{dim} E-\operatorname{dim} \operatorname{Ker} f$

Theorem 12.

Let $\left(e_{1}, \ldots, e_{n}\right)$ be a basis of E. Then for all linear map f from E to E^{\prime} we have $: \operatorname{rg}(f)=$ $\operatorname{rg}\left(f\left(e_{1}\right), \ldots, f\left(e_{n}\right)\right)$

Example 16.

Let f the function defined on \mathbb{R}^{3} by $f(x, y, z)=(x+y, y+z, 2 x+y-z)$
Determine the rank of this functions using two methods $(f(\vec{i}), f(\vec{j}), f(\vec{k})$) where $(\vec{i}, \vec{j}, \vec{k})$ is a basis of \mathbb{R}^{3}.

Theorem 13.

Let E and E^{\prime} be two \mathbb{K} vector spaces of finite dimensiosn and f A linear mapping of E into E^{\prime} then we have the following equivalences :

- f is injective $\Leftrightarrow \operatorname{rg}(f)=\operatorname{dim} E$
- f is surjective $\Leftrightarrow \operatorname{rg}(f)=\operatorname{dim} E^{\prime}$
- f is bijective $\Leftrightarrow \operatorname{dim} E=\operatorname{rg}(f)=\operatorname{dim} E^{\prime}$

6.4 How to characterize isomorphisms

Theorem 14.

Let E and E^{\prime} be two finite dimensional vector spaces over K with the same dimension and f a linear map from E to E^{\prime}. The following sentences are equivalent :
i) f is injective.
ii) f is surjective.
iii) f is bijective.

And therefore its corollary :

Corollary 15.

Let E be a vector space over K of finite dimension, f an endomorphism of E dans E.
We get : f is an automorphism of $E E \Leftrightarrow \operatorname{Ker} f=\left\{0_{E}\right\} \Leftrightarrow \operatorname{Im} f=E$

Example 17.

Prove that the map f from \mathbb{R}^{2} to itself defined by : $f(1,0)=(2,2)$ et $f(0,1)=(1,3)$ is an automorphism of \mathbb{R}^{2}.

Example 18.

Let

$$
f:\left\{\begin{array}{l}
\mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \\
(x, y) \mapsto(x, x+y, y)
\end{array}\right.
$$

Show that f is injective but not surjective.

$7 \quad$ Exercises

Exercise 1.

Which of the following mappings are linear?
$f_{1}:\left\{\begin{array}{l}\mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \\ (x, y, z) \mapsto(x-z, x+y)\end{array}\right.$
$f_{5}:\left\{\begin{array}{l}C^{0}(\mathbb{R}) \rightarrow C^{0}(\mathbb{R}) \\ f \mapsto \int_{a}^{x} f(t) d t\end{array}\right.$
$f_{2}:\left\{\begin{array}{l}\mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \\ (x, y, z) \mapsto(x z, x, x+z)\end{array}\right.$
$f_{6}:\left\{\begin{array}{l}\mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\ (x, y) \mapsto(x+1, y)\end{array}\right.$
$f_{3}:\left\{\begin{array}{l}C^{1}(\mathbb{R}) \rightarrow C^{0}(\mathbb{R}) \\ f \mapsto f+f^{\prime}\end{array}\right.$
$f_{4}:\left\{\begin{array}{l}\mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \\ (x, y) \mapsto(x+y, x, y)\end{array}\right.$
$f_{7}:\left\{\begin{array}{l}\mathcal{C}(\mathbb{R}) \rightarrow \mathcal{C}(\mathbb{R}) \\ f \mapsto 2 f\end{array}\right.$

Exercise 2.

Are the following linear forms?

1. The null mapping of E in \mathbb{K}.
2. $(x, y) \mapsto a x+b y$ where $(x, y, a, b) \in \mathbb{R}^{4}$.
3. Let u_{0} be a vector of \mathbb{R}^{2}. The mapping which for all u of \mathbb{R}^{2} associates it's scalar product with u_{0}.

Exercise 3.

For linear maps in exercise 1, determine their kernel and image. Specify whether the functions are injective and / or surjective.

Exercise 4.

Let p be the map defined by : $p:\left\{\begin{array}{l}\mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\ (x, y) \mapsto(4 x-6 y, 2 x-3 y)\end{array}\right.$

1. Show that p is linear
2. Show that p is a projection ie $p \circ p=p$.
3. Determine Ker p et $\operatorname{Im} p$.
4. Is p injective, surjective?

Exercise 5.

Let \mathbb{R}^{2} have it's canonical basis (\vec{i}, \vec{j}) and \mathbb{R}^{4} have it's canonical basis $\left(\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}, \vec{e}_{4}\right)$. Let ϕ : $\mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ be defined by :

$$
\phi\left(x \vec{e}_{1}+y \vec{e}_{2}+z \vec{e}_{3}+t \vec{e}_{4}\right)=(x+y+2 z+t) \vec{i}+(2 x-y+2 z-7 t) \vec{j}
$$

Assuming ϕ is a linear mapping, determine $\operatorname{Ker} \phi$ and $\operatorname{Im} \phi$.

Exercise 6.

Let f be a linear mapping from \mathbb{R}^{2} into \mathbb{R}^{5}, defined by $x=(\alpha, \beta)$ of \mathbb{R}^{2} :

$$
f(x)=(\alpha+2 \beta,-2 \alpha+3 \beta, \alpha+\beta, 3 \alpha+5 \beta,-\alpha+2 \beta)
$$

. We admit that f is a linear map.

1. Determine $\operatorname{Ker}(f)$ and its dimension.
2. Determine $\Im m(f)$ and its dimension.

Exercise 7.

Considering the vector space $E=C^{\infty}(\mathbb{R})$, let $f_{1}(x)=e^{x}, f_{2}(x)=e^{2 x}, \quad f_{3}(x)=e^{3 x}$.

1. Determine the dimension of the vector subspace F of E defined by $F=\operatorname{Vect}\left(f_{1}, f_{2}, f_{3}\right)$
2. Let $\phi: F \rightarrow F$, be defined by $\forall f \in F, \phi(f)=f^{\prime \prime}+f^{\prime}-3 f$. show that ϕ is an endomorphism of F.
3. Is ϕ an automorphism?

Exercise 8.

Let f be a function from \mathbb{R}^{2} into \mathbb{R}^{2} defined by $f:(x, y) \mapsto(x+y, x-y)$.

1. Show that f is an automorphism of \mathbb{R}^{2}.
2. determine its inverse.

Exercise 9.

Let E and E^{\prime} be two finite-dimensional vector spaces, and f be a linear mapping of E into E^{\prime}. Are the following statements true or false?

1. It is possible to have non-bijective f and $\operatorname{dim} E=\operatorname{dim} E^{\prime}$.
2. It is possible to have non-bijective f and $\operatorname{dim} E=\operatorname{dim} \operatorname{Im} f$.
3. It is possible to have f non bijective and $\operatorname{dim} E^{\prime}=\operatorname{dim} \operatorname{Im} f$.
4. If $\operatorname{rg} f=5$ and $\operatorname{dim} E^{\prime}=3$, then we don't know $\operatorname{dim} \operatorname{Ker} f$.
5. If $\operatorname{dim} E=5$, and f surjective then $\operatorname{dim} E^{\prime}=5$.
6. If $\mathcal{F}=\left(u_{1}, u_{2}, u_{3}\right)$ is a linearly dependant set of E, then $f(\mathcal{F})$ is a linearly dependant set of E^{\prime}.
7. If $\mathcal{F}=\left(u_{1}, u_{2}\right)$ is a linearly independant set of E, then $f(\mathcal{F})$ is a linearly independant set of E^{\prime}.

Exercise 10.

Let a, b, c real numbers with $c \neq 0$. We consider in \mathbb{R}^{3}, the vector : $w=(a, b, c)$.
Let $\mathcal{B}_{c}=(\vec{i}, \vec{j}, \vec{k})$ be a basis of \mathbb{R}^{3}.
Let f be an endomorphism of \mathbb{R}^{3} such that for all vectors $t=(x, y, z)$ of $\mathbb{R}^{3} f(t)=$ ($c y-b z, a z-c x, b x-a y$).

1. Show that $w \in \operatorname{Ker}(f)$.
2. Show that the set $(f(\vec{i}), f(\vec{j}))$ is linearly independant.
3. Deduce that $\operatorname{Ker}(f)=\operatorname{Vect}(w)$ and determine a basis of $\Im m(f)$.
4. Is f injective? Futhermore (\vec{i}, \vec{j}) and $(f(\vec{i}), f(\vec{j}))$ are not collinear. Is this in contradiction with 1) of theorem 8 ?

Exercise 11.

Let $(\vec{i}, \vec{j}, \vec{k})$ a basis of \mathbb{R}^{3} and f a mapping of \mathbb{R}^{3} into \mathbb{R}^{3} defined by :
$f(x, y, z)=(y-x, y+z, x)$.

1. Show that f is an automorphism of \mathbb{R}^{3}.
2. Give the rank of f.
3. Let $F=\mathcal{V} \operatorname{ect}(f(\vec{i}), f(\vec{j}))$ and $G=\mathcal{V} \operatorname{ect}(f(\vec{i}), f(\vec{k}))$.

Without any calculation determine $F \cap G$.

Exercise 12.

In \mathbb{R}^{2}, we define an endomorphism u by :
$\forall(x, y) \in \mathbb{R}^{2}, \quad u(x, y)=(2 x-y, x+y)$.

1. What is the rank of u ? Deduce that u is an automorphism.
2. Let $X=(x, y)$ be a vector of \mathbb{R}^{2}.
(a) Determine the image of X by $u \circ u$.
(b) What can be said of the set $(X, u(X), u \circ u(X))$? Deduce three non zero reals $\alpha, \beta, \varepsilon$ independent of x and y such that: $\alpha u \circ u(X)+\beta u(X)+\varepsilon X=0$.
(c) Deduce that the endomorphism $v=\alpha u \circ u+\beta u+\varepsilon I d$ is the null endomorphism.
(d) Composing v by u^{-1}, deduce u^{-1} as function of u and $I d$. Determine the coordinates of $u^{-1}(X)$ as a function of x and y.

Exercise 13. (optional)
Let f and g be two endomorphisms of \mathbb{K} vector space E.
Show that $\Im m(g \circ f) \subset \Im m(g)$ and $\operatorname{Ker}(f) \subset \operatorname{Ker}(g \circ f)$.
Exercise 14. (optional)
Let E be a $K k$ vector space of dimension 3. Let g be an endomorphism of E satisfying $g^{2} \neq 0$ and $g^{3}=0$.

1. Check the following inclusions : $0_{E} \subset \operatorname{Ker} g \subset \operatorname{Ker} g^{2} \subset E$.
2. Show that $1 \leqslant \operatorname{dim} \operatorname{Ker} g \leqslant 2$

Exercise 15. (optional)
Let F and G be two vector subspaces of a vector space E of finite dimension.

1. Considering $\phi:\left\{\begin{array}{l}F \times G \rightarrow E \\ (x, y) \mapsto x+y\end{array}\right.$ et $\psi:\left\{\begin{array}{l}F \cap G \rightarrow F \times G \\ x \mapsto(x,-x)\end{array}\right.$.
(a) Show that ϕ and ψ are linear mappings
(b) On what conditions on F and G, is ϕ an isomorphism?
(c) Compare Ker ϕ and $\operatorname{Im} \psi$.
(d) Justify $\operatorname{dim} \operatorname{Im} \psi=\operatorname{dim} F \cap G$.
2. Show that $\operatorname{dim} F \times G=\operatorname{dim} F+\operatorname{dim} G$.
3. Deduce, using the rank formula, a proof of the Grassmann formula :

$$
\operatorname{dim} F+G=\operatorname{dim} F+\operatorname{dim} G-\operatorname{dim} F \cap G
$$

