

Inverse functions

0.1 Inverses of trigonometric functions

0.1.1 The Arcsine function

🚝 Video : The Arcsine function

Definition 1.

The restriction of the sine function from $\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$ to [-1;1] is continuous and strictly increasing, thus it has an inverse function defined on [-1;1] and takes values on $\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$ called the Arcsine function and denoted by Arcsin. This function is strictly increasing on [-1;1], continuous on [-1;1] but differentiable on] - 1;1[as the derivative of the sine function is null at $-\frac{\pi}{2}$ and $\frac{\pi}{2}$.

Remark 1 (BE CAREFUL).

The function Arcsin is not the inverse function of the sine function but of its restriction to $\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$. We get for instance :

$$\sin\left(\operatorname{Arcsin}\frac{1}{3}\right) = \frac{1}{3}$$
$$\operatorname{Arcsin}\left(\sin\frac{\pi}{8}\right) = \frac{\pi}{8}$$

but

Arcsin $\left(\sin\frac{3\pi}{4}\right) = \frac{\pi}{4}$ as it is the unique element of $\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$ whose sine is equal to the sine of $\frac{3\pi}{4}$.

Example 1. On your own Compute $\operatorname{Arcsin}(\sin(\pi/3))$, $\operatorname{Arcsin}(\sin(4\pi/3))$

Derivative Video : Derivative

$$\forall x \in]-1; 1[, \operatorname{Arcsin}' x = \frac{1}{\sin'(\operatorname{Arcsin} x)} = \frac{1}{\cos(\operatorname{Arcsin} x)}$$

but $\cos^2 (\operatorname{Arcsin} x) + \sin^2 (\operatorname{Arcsin} x) = 1$ thus it follows $\cos^2 (\operatorname{Arcsin} x) = 1 - x^2$. As $\operatorname{Arcsin} x \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ we get $\cos (\operatorname{Arcsin} x) \ge 0$ so $\cos (\operatorname{Arcsin} x) = \sqrt{1 - x^2}$. Finally : $\forall x \in]-1; 1[, \operatorname{Arcsin}' x = \frac{1}{\sqrt{1 - x^2}}$

Oddness Evenness

Arcsin is odd as it is the inverse function of an odd function. So it sufficies to study the function on [0; 1].

Graph

0.1.2 The Arccosine function

Video : The Arcosine function

Definition 2. The restriction of the cosine function to $[0; \pi]$ takes values in [-1; 1] and is both continuous and strictly decreasing, thus it has an inverse function defined on [-1; 1] which takes values in $[0; \pi]$. This function is called the Arccosine and denoted by Arccos. This function is strictly decreasing on [-1; 1], continuous on [-1; 1] but differentiable on]-1; 1[as the derivative of the cosine function is null at 0 and π .

Remark 2 (BE CAREFUL).

Arccos is not the inverse function of the cosine function but of its restriction to $[0;\pi]$. Thus for instance we get :

$$\cos\left(\operatorname{Arccos}\frac{2}{3}\right) = \frac{2}{3}$$
$$\operatorname{Arccos}\left(\cos\frac{\pi}{5}\right) = \frac{\pi}{5}$$

but

 $\operatorname{Arccos}\left(\cos\frac{4\pi}{3}\right) = \frac{2\pi}{3}$ as it is the unique element of $[0;\pi]$ such that its cosine is the same as the cosine of $\frac{4\pi}{3}$.

Video : Fundamental remark

Example 2. On your own Compute Arcsin($\cos(-\pi/2)$), Arcsin($\cos(\pi/2)$)

Derivative Video : Derivative

$$\forall x \in]-1; 1[, \operatorname{Arccos}' x = \frac{-1}{\sqrt{1-x^2}}$$

Example 3.

Prove it

$$\forall x \in]-1; 1[, \operatorname{Arccos}' x = \frac{1}{\cos'(\operatorname{Arccos} x)} = \frac{-1}{\sin(\operatorname{Arccos} x)}$$

but $\cos^2(\operatorname{Arccos} x) + \sin^2(\operatorname{Arccos} x) = 1$ so $\sin^2(\operatorname{Arccos} x) = 1 - x^2$.

Since $\operatorname{Arccos} x \in [0; \pi]$ we have $\sin(\operatorname{Arccos} x) \ge 0$ we get $\sin(\operatorname{Arccos} x) = \sqrt{1 - x^2}$. So finally :

$$\forall x \in]-1; 1[, \operatorname{Arccos}' x = \frac{-1}{\sqrt{1-x^2}}$$

Video : Derivative

Be careful Arccos is neither odd nor even.

Graph

1

0

-1

Prove using two different ways that : $\forall x \in [-1; 1]$, $\operatorname{Arccos} x + \operatorname{Arcsin} x = \frac{\pi}{2}$ **Video** : Example

ά

COS

On your own :

- 1. Prove that $\cos(\operatorname{Arccos} x + \operatorname{Arcsin} x) = 0$.
- 2. Prove that sin(Arccos x + Arcsin x) = 1.
- 3. Justify that $\forall x \in [-1, 1]$, $(\operatorname{Arccos} x + \operatorname{Arcsin} x) \in [-\pi/2, 3\pi/2]$.
- 4. Deduce that $\forall x \in [-1; 1]$, $\operatorname{Arccos} x + \operatorname{Arcsin} x = \frac{\pi}{2}$.

0.1.3 Arc tangent

🚝 Video : The Arctan function

Definition 3. The restriction of the tangent function to $\left]-\frac{\pi}{2}; \frac{\pi}{2}\right[$ takes values in $]-\infty; +\infty[$ and is continuous and strictly increasing, thus it has an inverse function defined on $]-\infty; +\infty[$, which takes values in $\left]-\frac{\pi}{2}; \frac{\pi}{2}\right[$. This inverse function is called the arctangent function and denoted by Arctan. This inverse function is strictly increasing on \mathbb{R} , continuous and differentiable on \mathbb{R} .

Remark 3 (BE CAREFUL).

Arctan is not the inverse function of the tangent function but the inverse function of its restriction to $\left|-\frac{\pi}{2};\frac{\pi}{2}\right|$. That is why we get for instance :

$$\tan (\arctan 5) = 5$$
$$\arctan \left(\tan \frac{\pi}{7}\right) = \frac{\pi}{7}$$

but

Arctan $\left(\tan\frac{8\pi}{7}\right) = \frac{\pi}{7}$ as it is the unique element of $\left]-\frac{\pi}{2}; \frac{\pi}{2}\right[$ such that its tangent is the same as the tangent of $\frac{8\pi}{7}$.

Example 5. On your own Compute $Arctan(tan(-\pi/3))$, $Arctan(tan(2\pi/3))$

Derivative

$$\forall x \in \mathbb{R}, \operatorname{Arctan}' x = \frac{1}{1 + x^2}$$

Example 6.

Prove the formula for the derivative

$$\forall x \in \mathbb{R}, \operatorname{Arctan}' x = \frac{1}{\tan'(\operatorname{Arctan} x)} = \frac{1}{1 + \tan^2(\operatorname{Arctan} x)}$$

Thus it follows :

$$\forall x \in \mathbb{R}, \operatorname{Arctan}' x = \frac{1}{1 + x^2}$$

Video : Derivative

Oddness Evenness

Arctan is an odd function as it is the inverse function of an odd function.

Example 7. Prove that :

1.
$$\forall x > 0$$
, Arctan $x + \arctan \frac{1}{x} = \frac{\pi}{2}$
2. $\forall x < 0$, Arctan $x + \arctan \frac{1}{x} = -\frac{\pi}{2}$

Video : Example

0.2 Inverse functions of hyperbolic functions

Definition 4.

The hyperbolic cosine ch is a bijection (one to one correspondence) from $[0; +\infty[$ to $[1; +\infty[$ as it is continous and sctictly increasing, thus its inverse function exists and is called inverse hyperbolic cosine :

Argch x :
$$[1, +\infty[\rightarrow [0, +\infty[$$

Definition 5.

The hyperbolic sine sh is a bijection from \mathbb{R} to \mathbb{R} as it is continuous and strictly increasing from \mathbb{R} to \mathbb{R} , thus its inverse function exists and is called inverse hyperbolic sine.

$$\operatorname{Argsh} x: \mathbb{R} \to \mathbb{R}$$

Definition 6.

The hyperbolic tangent th is continuous and stricly increasing from \mathbb{R} to]-1;1[, thus ist inverse function exists and is called inverse hyperbolic tangent.

$$\operatorname{Argth} x:]-1, 1[
ightarrow \mathbb{R}$$

Video : Introduction

Example 8. 1. Let's define
$$f(x) = \ln (x + \sqrt{x^2 - 1})$$
 for all $x \ge 1$
(a) Calculate $ch(f(x))$ for $x \ge 1$.
(b) Calculate $f(ch(x))$ for $x \ge 0$.
(c) What is your conclusion?
Video : Example
2. Let's define for all $x \in \mathbb{R}$, $f(x) = \ln (x + \sqrt{x^2 + 1})$
(a) We set $y = f(x)$. Express x depending on y.
(b) What is your conclusion?
Video : Example
3. We admit that $x \in] -1$; 1[, Argth $x = \frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)$
Example 9. Prove that :
1. For all $x > 1$, Argch' $x = \frac{1}{\sqrt{x^2 - 1}}$
Video : Derivative 1
2. For all $x \in \mathbb{R}$, Argsh' $x = \frac{1}{\sqrt{x^2 + 1}}$
Video : Derivative 2
3. For all $x \in] -1$; 1[, Argth' $x = \frac{1}{1-x^2}$
Video : Derivative 3
Example 10.
Find $ch(Argch x)$ for $x \in [1; +\infty[$ and $Argch(ch x)$ for $x \in \mathbb{R}$, distinguishing cases if necessary.

.

Video : Example

Example 11. Study the map $f: x \mapsto x \operatorname{Argsh} x$. Video : Example

Exercises

Exercise 1.

- 1. Compute when possible : sin(arcsin(2)), $arccos(cos(2\pi))$, $arcsin(sin(\frac{10\pi}{3}))$.
- 2. Simplify, specifying the domain of definition : cos(arcsin(x)), cos(arctan(x)) and tan(arcsin x)).

Exercise 2.

Solve this equation : $\arcsin(\sqrt{3}x) = \frac{\pi}{2} - \arcsin x$

Exercise 3. Study those functions :

 $f(x) = \sin(\arcsin x) \operatorname{etg}(x) = \arcsin(\sin x)$

Exercise 4. Let's define : $f(x) = \arcsin\left(\frac{2x}{1+x^2}\right) - 2\arctan x$

- 1. Give the domain of definition of f?
- 2. Compute f'. Let's deduce an easier expression for f.
- 3. Draw the graph of f.

Exercise 5.

1. Compute if possible : $\operatorname{Argch}(1)$, $\operatorname{Argch}(\operatorname{ch}(-2))$, $\operatorname{sh}(\operatorname{Argch}(2))$, $\operatorname{Argsh}(\operatorname{sh}(-10))$, $\operatorname{tan}(\operatorname{arctan}(\frac{\pi}{2}))$.

- 2. Simplify (specifying the domain of definition) : ch(Argch(x))
- **Exercise 6.** 1. Show that the equation Argch(x) + Argsh(x) = 1 eventually has a solution by expliciting it.
 - 2. Why do you have the word "eventually" in the previous question?
 - 3. Show, by studying a function, that the equation has a solution.
 - 4. Conclude.

Exercise 7.

Study this function : $\arctan(th(\frac{x}{2}))$

Exercise 8. (optional)

The diagram below shows an optical fiber, with $n_c > n_q$.

According to Descartes' laws for refraction : $\sin \theta = n_c \sin \alpha$ and $n_c \sin I = n_g \sin r$. If $\frac{n_c}{n_g} \sin I > 1$, the ray is reflected on the sheath, and $r = \frac{\pi}{2}$, is then the limiting case of refraction.

Show that $\sin \theta = \sqrt{n_c^2 - n_g^2}$ if $r = \frac{\pi}{2}$. $\sin \theta$ is called the numerical aperture.