Inverse functions

0.1 Inverses of trigonometric functions

0.1.1 The Arcsine function

Video : The Arcsine function

Definition 1.

The restriction of the sine function from $\left[-\frac{\pi}{2} ; \frac{\pi}{2}\right]$ to $[-1 ; 1]$ is continuous and strictly increasing, thus it has an inverse function defined on $[-1 ; 1]$ and takes values on $\left[-\frac{\pi}{2} ; \frac{\pi}{2}\right]$ called the Arcsine function and denoted by Arcsin. This function is strictly increasing on $[-1 ; 1]$, continuous on $[-1 ; 1]$ but differentiable on $]-1 ; 1[$ as the derivative of the sine function is null at $-\frac{\pi}{2}$ and $\frac{\pi}{2}$.

Remark 1 (BE CAREFUL).

The function Arcsin is not the inverse function of the sine function but of its restriction to $\left[-\frac{\pi}{2} ; \frac{\pi}{2}\right]$. We get for instance :

$$
\begin{aligned}
& \sin \left(\operatorname{Arcsin} \frac{1}{3}\right)=\frac{1}{3} \\
& \operatorname{Arcsin}\left(\sin \frac{\pi}{8}\right)=\frac{\pi}{8}
\end{aligned}
$$

but
$\operatorname{Arcsin}\left(\sin \frac{3 \pi}{4}\right)=\frac{\pi}{4}$ as it is the unique element of $\left[-\frac{\pi}{2} ; \frac{\pi}{2}\right]$ whose sine is equal to the sine of $\frac{3 \pi}{4}$.

Example 1. On your own
Compute $\operatorname{Arcsin}(\sin (\pi / 3)), \operatorname{Arcsin}(\sin (4 \pi / 3))$

Derivative

票 Video: Derivative

$$
\forall x \in]-1 ; 1\left[, \operatorname{Arcsin}^{\prime} x=\frac{1}{\sin ^{\prime}(\operatorname{Arcsin} x)}=\frac{1}{\cos (\operatorname{Arcsin} x)}\right.
$$

but $\cos ^{2}(\operatorname{Arcsin} x)+\sin ^{2}(\operatorname{Arcsin} x)=1$
thus it follows $\cos ^{2}(\operatorname{Arcsin} x)=1-x^{2}$.
As $\operatorname{Arcsin} x \in\left[-\frac{\pi}{2} ; \frac{\pi}{2}\right]$ we get $\cos (\operatorname{Arcsin} x) \geqslant 0$ so $\cos (\operatorname{Arcsin} x)=\sqrt{1-x^{2}}$. Finally :

$$
\forall x \in]-1 ; 1\left[, \operatorname{Arcsin}^{\prime} x=\frac{1}{\sqrt{1-x^{2}}}\right.
$$

Oddness Evenness

Arcsin is odd as it is the inverse function of an odd function. So it sufficies to study the function on $[0 ; 1]$.
Graph

0.1.2 The Arccosine function

洋 Video: The Arcosine function

Definition 2. The restriction of the cosine function to $[0 ; \pi]$ takes values in $[-1 ; 1]$ and is both continuous and strictly decreasing, thus it has an inverse function defined on $[-1 ; 1]$ which takes values in $[0 ; \pi]$. This function is called the Arccosine and denoted by Arccos. This function is strictly decreasing on $[-1 ; 1]$, continuous on $[-1 ; 1]$ but differentiable on $]-1 ; 1$ [as the derivative of the cosine function is null at 0 and π.

Remark 2 (BE CAREFUL).

Arccos is not the inverse function of the cosine function but of its restriction to $[0 ; \pi]$. Thus for instance we get :

$$
\begin{aligned}
& \cos \left(\operatorname{Arccos} \frac{2}{3}\right)=\frac{2}{3} \\
& \operatorname{Arccos}\left(\cos \frac{\pi}{5}\right)=\frac{\pi}{5}
\end{aligned}
$$

but
$\operatorname{Arccos}\left(\cos \frac{4 \pi}{3}\right)=\frac{2 \pi}{3}$ as it is the unique element of $[0 ; \pi]$ such that its cosine is the same as the cosine of $\frac{4 \pi}{3}$.

Video : Fundamental remark

Example 2. On your own

Compute $\operatorname{Arcsin}(\cos (-\pi / 2)), \operatorname{Arcsin}(\cos (\pi / 2))$

Derivative

悲 Video: Derivative

$$
\forall x \in]-1 ; 1\left[, \operatorname{Arccos}^{\prime} x=\frac{-1}{\sqrt{1-x^{2}}}\right.
$$

Example 3.

Prove it

$$
\forall x \in]-1 ; 1\left[, \operatorname{Arccos}^{\prime} x=\frac{1}{\cos ^{\prime}(\operatorname{Arccos} x)}=\frac{-1}{\sin (\operatorname{Arccos} x)}\right.
$$

but $\cos ^{2}(\operatorname{Arccos} x)+\sin ^{2}(\operatorname{Arccos} x)=1$
so $\sin ^{2}(\operatorname{Arccos} x)=1-x^{2}$.
Since $\operatorname{Arccos} x \in[0 ; \pi]$ we have $\sin (\operatorname{Arccos} x) \geqslant 0$ we get $\sin (\operatorname{Arccos} x)=\sqrt{1-x^{2}}$. So finally :

$$
\forall x \in]-1 ; 1\left[, \operatorname{Arccos}^{\prime} x=\frac{-1}{\sqrt{1-x^{2}}}\right.
$$

至 Video : Derivative

Be careful

Arccos is neither odd nor even.
Graph

Institut national
DES SCIENCES
CENTRE VAL DE LOIRE

Example 4.
Prove using two different ways that : $\forall x \in[-1 ; 1], \operatorname{Arccos} x+\operatorname{Arcsin} x=\frac{\pi}{2}$
畾 Video: Example
On your own :

1. Prove that $\cos (\operatorname{Arccos} x+\operatorname{Arcsin} x)=0$.
2. Prove that $\sin (\operatorname{Arccos} x+\operatorname{Arcsin} x)=1$.
3. Justify that $\forall x \in[-1,1],(\operatorname{Arccos} x+\operatorname{Arcsin} x) \in[-\pi / 2,3 \pi / 2]$.
4. Deduce that $\forall x \in[-1 ; 1], \operatorname{Arccos} x+\operatorname{Arcsin} x=\frac{\pi}{2}$.

0.1.3 Arc tangent

Video : The Arctan function

Definition 3. The restriction of the tangent function to $]-\frac{\pi}{2} ; \frac{\pi}{2}[$ takes values in $]-\infty ;+\infty[$ and is continuous and stricly increasing, thus it has an inverse function defined on $]-\infty ;+\infty$ [, which takes values in $]-\frac{\pi}{2} ; \frac{\pi}{2}[$. This inverse function is called the arctangent function and denoted by Arctan. This inverse function is strictly increasing on \mathbb{R}, continuous and differentiable on \mathbb{R}.

Remark 3 (BE CAREFUL).

Arctan is not the inverse function of the tangent function but the inverse function of its restriction to $]-\frac{\pi}{2} ; \frac{\pi}{2}[$. That is why we get for instance :

$$
\begin{aligned}
\tan (\operatorname{Arctan} 5) & =5 \\
\operatorname{Arctan}\left(\tan \frac{\pi}{7}\right) & =\frac{\pi}{7}
\end{aligned}
$$

but
$\operatorname{Arctan}\left(\tan \frac{8 \pi}{7}\right)=\frac{\pi}{7}$ as it is the unique element of $]-\frac{\pi}{2} ; \frac{\pi}{2}[$ such that its tangent is the same as the tangent of $\frac{8 \pi}{7}$.

Example 5. On your own
Compute $\operatorname{Arctan}(\tan (-\pi / 3)), \operatorname{Arctan}(\tan (2 \pi / 3))$

Derivative

$$
\forall x \in \mathbb{R}, \operatorname{Arctan}^{\prime} x=\frac{1}{1+x^{2}}
$$

Example 6.

Prove the formula for the derivative

$$
\forall x \in \mathbb{R}, \operatorname{Arctan}^{\prime} x=\frac{1}{\tan ^{\prime}(\operatorname{Arctan} x)}=\frac{1}{1+\tan ^{2}(\operatorname{Arctan} x)}
$$

Thus it follows:

$$
\forall x \in \mathbb{R}, \operatorname{Arctan}^{\prime} x=\frac{1}{1+x^{2}}
$$

豆 Video : Derivative

Oddness Evenness

Arctan is an odd function as it is the inverse function of an odd function.
Graph

Institut national
INSTITU NATION
DES SCIENCES
DES SCIENCES
APPLOUEES
centre val de loire

Example 7. Prove that :

1. $\forall x>0, \operatorname{Arctan} x+\operatorname{Arctan} \frac{1}{x}=\frac{\pi}{2}$
2. $\forall x<0, \operatorname{Arctan} x+\operatorname{Arctan} \frac{1}{x}=-\frac{\pi}{2}$
*Video: Example

0.2 Inverse functions of hyperbolic functions

Definition 4.

The hyperbolic cosine ch is a bijection (one to one correspondence) from [0; $+\infty$ [to $[1 ;+\infty[$ as it is continous and sctictly increasing, thus its inverse function exists and is called inverse hyperbolic cosine :

$$
\operatorname{Argch} x:[1,+\infty[\rightarrow[0,+\infty[
$$

Definition 5.

The hyperbolic sine sh is a bijection from \mathbb{R} to \mathbb{R} as it is continuous and strictly increasing from \mathbb{R} to \mathbb{R}, thus its inverse function exists and is called inverse hyperbolic sine.

$$
\operatorname{Argsh} x: \mathbb{R} \rightarrow \mathbb{R}
$$

Definition 6.

The hyperbolic tangent th is continuous and stricly increasing from \mathbb{R} to $]-1 ; 1[$, thus ist inverse function exists and is called inverse hyperbolic tangent.

$$
\text { Argth } x:]-1,1[\rightarrow \mathbb{R}
$$

Video ：Introduction

Example 8．1．Let＇s define $f(x)=\ln \left(x+\sqrt{x^{2}-1}\right)$ for all $x \geqslant 1$
（a）Calculate $\operatorname{ch}(f(x))$ for $x \geqslant 1$ ．
（b）Calculate $f(\operatorname{ch}(x))$ for $x \geqslant 0$ ．
（c）What is your conclusion？
至 Video ：Example
2．Let＇s define for all $x \in \mathbb{R}, f(x)=\ln \left(x+\sqrt{x^{2}+1}\right)$
（a）We set $y=f(x)$ ．Express x depending on y ．
（b）What is your conclusion？
Video ：Example
3．We admit that $x \in]-1 ; 1\left[, \operatorname{Argth} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)\right.$
Example 9．Prove that：
1．For all $x>1, \operatorname{Argch}^{\prime} x=\frac{1}{\sqrt{x^{2}-1}}$
盖 Video ：Derivative 1
2．For all $x \in \mathbb{R}, \operatorname{Argsh}^{\prime} x=\frac{1}{\sqrt{x^{2}+1}}$
晋 Video：Derivative 2
3．For all $x \in]-1 ; 1\left[\right.$, Argth $^{\prime} x=\frac{1}{1-x^{2}}$
豆 Video ：Derivative 3

Example 10.

Find $\operatorname{ch}(\operatorname{Argch} x)$ for $x \in[1 ;+\infty[$ and $\operatorname{Argch}(\operatorname{ch} x)$ for $x \in \mathbb{R}$ ，distinguishing cases if necessary．
产 Video ：Example

Example 11.

Study the map $\mathrm{f}: \mathrm{x} \mapsto \mathrm{x} \operatorname{Argsh} \mathrm{x}$ ．
洋 Video：Example

Exercises

Exercise 1.

1. Compute when possible : $\sin (\arcsin (2)), \arccos (\cos (2 \pi)), \arcsin \left(\sin \left(\frac{10 \pi}{3}\right)\right)$.
2. Simplify, specifying the domain of definition : $\cos (\arcsin (x)), \cos (\arctan (x))$ and $\tan (\arcsin x))$.

Exercise 2.

Solve this equation :
$\arcsin (\sqrt{3} x)=\frac{\pi}{2}-\arcsin x$

Exercise 3.

Study those functions :

$$
f(x)=\sin (\arcsin x) \text { etg }(x)=\arcsin (\sin x)
$$

Exercise 4. Let's define : $f(x)=\arcsin \left(\frac{2 x}{1+x^{2}}\right)-2 \arctan x$

1. Give the domain of definition of f ?
2. Compute f^{\prime}. Let's deduce an easier expression for f.
3. Draw the graph of f.

Exercise 5.

1. Compute if possible : $\operatorname{Argch}(1), \operatorname{Argch}(\operatorname{ch}(-2)), \operatorname{sh}(\operatorname{Argch}(2)), \operatorname{Argsh}(\operatorname{sh}(-10)), \tan \left(\arctan \left(\frac{\pi}{2}\right)\right)$.

CENTRE VAL DE LOIRE
2. Simplify (specifying the domain of definition) : $\operatorname{ch}(\operatorname{Argch}(x))$

Exercise 6. 1. Show that the equation $\operatorname{Argch}(x)+\operatorname{Argsh}(x)=1$ eventually has a solution by expliciting it.
2. Why do you have the word "eventually" in the previous question?
3. Show, by studying a function, that the equation has a solution.
4. Conclude.

Exercise 7.

Study this function : $\arctan \left(\operatorname{th}\left(\frac{x}{2}\right)\right)$
Exercise 8. (optional)
The diagram below shows an optical fiber, with $\mathfrak{n}_{c}>\mathfrak{n}_{g}$.

According to Descartes' laws for refraction : $\sin \theta=n_{c} \sin \alpha$ and $n_{c} \sin I=n_{g} \sin r$.
If $\frac{\mathfrak{n}_{c}}{\mathfrak{n}_{g}} \sin I>1$, the ray is reflected on the sheath, and $r=\frac{\pi}{2}$, is then the limiting case of refraction.
Show that $\sin \theta=\sqrt{n_{c}^{2}-n_{g}^{2}}$ if $r=\frac{\pi}{2}$.
$\sin \theta$ is called the numerical aperture.

