

MATRIX AND MATRIX ALGEBRA : applications to two by two matrices

Learning objectives

- To understand what a matrix is.
- To be able to add and multiply matrices
- To compute a determinant and the inverse of a two by two matrix.

Throughout the chapter we will designate by \mathbb{K} the sets \mathbb{R} or \mathbb{C} .

1 Matrices

1.1 Definitions

Definition 1 (Notation).

We call matrix of n rows and p columns, an array of np numbers belonging to $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . So a matrix is a rectangular collection of numbers.

We denote it by :

$$M = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & a_{ij} & \vdots \\ a_{n1} & \cdots & \cdots & a_{np} \end{pmatrix} = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$$

under extended or compressed form.

The a_{ij} are real or complex, i is the index for the row and j for the column of a_{ij} .

 $\mathcal{M}_{n,p}(\mathbb{K})$ denotes the set of matrices with n rows and p columns, with coefficient in the set \mathbb{K} .

When p = 1 we have a column vector $\begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$

Example 1.

Each of the following matrices belong to $\mathcal{M}_{n,p}(\mathbb{K})$. Determine n, p and \mathbb{K} for each one :

1.
$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 1 \end{pmatrix}$$

2. $B = \begin{pmatrix} i & -i \\ -i & \sqrt{2} \\ 1-i & 2 \end{pmatrix}$
3. $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
4. $D = \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$

 \blacksquare Video : Generalities and example 1

1.2 Basic operations

1.2.1 Matrix addition

The addition of two matrices is a very natural process. To perform matrix addition, two matrices must have **the same dimensions**. In that case simply add each individual components, like below. It is simply denoted by + and we have the following definition :

Definition 2.

Let A and B two matrices with to the same dimensions $\mathcal{M}_{n,p}(\mathbb{K})$, then we get :

$$A = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$$
$$B = (b_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$$

then

$$A + B = (a_{ij} + b_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}} \in \mathcal{M}_{n,p}\left(\mathbb{K}\right)$$

Remark 1.

The addition of two matrices is only possible if the two matrices belong to the same set. Otherwise, the sum does not exist!

Example 2.

Soit
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 1 \\ 1 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 1 \\ -1 & -1 \\ 1 & 2 \end{pmatrix}$

Justify that the sum of the two matrices is possible and compute A + B.

 \blacksquare Video : addition and example 2

Property 1.

Let A, B et C be three matrices with the same dimensions $\mathcal{M}_{n,p}(\mathbb{K})$ (i)

A + B = B + A

Matrix addition is commutative.

(ii)

$$(A+B) + C = A + (B+C)$$

Matrix addition is associative.

(iii) The identity element is called the zero matrix (or null matrix) denoted by O such that :

$$O = (0)_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}} = \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & 0 & \vdots \\ 0 & \cdots & 0 \end{pmatrix}$$

(iv) Each matrix $A \in \mathcal{M}_{n,p}(\mathbb{K})$ owns a symmetry matrix denoted by $-A \in \mathcal{M}_{n,p}(\mathbb{K})$ such that :

$$A + (-A) = O$$

We denote A - A = O. Thus we get :

$$-A = (-a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$$

With those properties, $(\mathcal{M}_{n,p}(\mathbb{K}), +)$ is a commutative group.

1.2.2 Matrix multiplication and multiplication by a scalar

It is possible to multiply a matrix by a scalar belonging to \mathbb{K} . To multiply a matrix by a scalar, also known as scalar multiplication, multiply every element in the matrix by the scalar.

Definition 3.

Let's consider $A \in \mathcal{M}_{n,p}(\mathbb{K})$ such that $A = (a_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}$ and a scalar $\alpha \in \mathbb{K}$; then we get :

$$\alpha \cdot A = \alpha A = (\alpha a_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}} = \begin{pmatrix} \alpha a_{11} & \cdots & \alpha a_{1p} \\ & & & \\ \vdots & \alpha a_{ij} & \vdots \\ \alpha a_{n1} & \cdots & \alpha a_{np} \end{pmatrix} \in \mathcal{M}_{n,p} (\mathbb{K})$$

Example 3.

Let's consider $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \in \mathcal{M}_{2,2}(\mathbb{R})$ and let $\alpha = 7$. Compute 7A.

 \blacksquare Video : multiplication by a scalar and example 3

Remark 2.

The scalar is always written to the left of the matrix. Thus it is written 7A but certainly not A7! It is also written $\frac{1}{7}A$ but certainly not $\frac{A}{7}$!

Property 2. Some properties on the law ·

(i)

$$\forall \alpha \in \mathbb{K}, \forall (A, B) \in \left(\mathcal{M}_{n, p}\left(\mathbb{K}\right)\right)^{2}, \alpha \left(A + B\right) = \alpha A + \alpha B$$

(ii)

 $\forall (\alpha, \beta) \in \mathbb{K}^{2}, \forall A \in \mathcal{M}_{n,p}(\mathbb{K}), (\alpha + \beta) A = \alpha A + \beta A$

(iii)

$$\forall (\alpha, \beta) \in \mathbb{K}^2, \forall A \in \mathcal{M}_{n,p}(\mathbb{K}), \alpha (\beta A) = (\alpha \beta) A$$

(iv) 1 is the identity element for the scalar multiplication whether $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$

Remark 3.

Due to the four previous properties, the set $(\mathcal{M}_{n,p}(\mathbb{K}), +, \cdot)$ is a vector space. The vectors are in this vector space matrices with *n* rows and *p* columns. Once again we see that the scoring with an arrow would be disastrous !

1.2.3 Matrix multiplication

Matrix multiplication is not a very natural law.

Definition 4.

Let a matrix
$$A = (a_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq \mathbf{p}}} \in \mathcal{M}_{n,\mathbf{p}}(\mathbb{K}) \text{ and } B = (b_{ij})_{\substack{1 \leq i \leq \mathbf{p} \\ 1 \leq j \leq q}} \in \mathcal{M}_{\mathbf{p},q}(\mathbb{K}).$$

It is possible to multiply A by B, we have

$$A \times B \in \mathcal{M}_{n,q}\left(\mathbb{K}\right)$$

and \colon

$$A \times B = (c_{ij})_{\substack{1 \le i \le r\\1 \le j \le d}}$$

with

$$c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}$$

Example 4. $A = \begin{pmatrix} 1 & 2 \\ -1 & 0 \\ 0 & 1 \end{pmatrix}$ $B = \begin{pmatrix} 2 & 3 \\ 1 & -1 \end{pmatrix}$ Compute *AB* and *BA*.

 \checkmark Video : multiplication and example 3

Remark 4. VERY IMPORTANT !

- 1. The number of columns of the first matrix in the multiplication should be equal to the number of rows of the second matrix. Otherwise, the calculation of $A \times B$ is impossible.
- 2. The result of the matrix product of two matrices, has the number of rows of the first matrix and the number of columns of the second.
- 3. We can write AB instead of $A \times B$

Property 3.

- 1. There exit matrices $A \in \mathcal{M}_{n,n}$ and $B \in \mathcal{M}_{n,n}$ such that $AB \neq BA$.
- 2. There exist matrices $A \in \mathcal{M}_{n,n}$ and $B \in \mathcal{M}_{n,n}$, A and B nonzero, such that AB = 0

Said otherwise, generally $AB \neq BA$ (We say that the matrix product is not commutative) and $AB = 0 \Rightarrow A = 0$ or B = 0.

Property 4. Some other properties

(i)

$$\forall A \in \mathcal{M}_{n,p}\left(\mathbb{K}\right), \forall B \in \mathcal{M}_{p,q}\left(\mathbb{K}\right), \forall C \in \mathcal{M}_{q,r}\left(\mathbb{K}\right), A\left(BC\right) = (AB)C$$

We say that the matrix product is associative.

(ii)

 $\forall A \in \mathcal{M}_{n,p}\left(\mathbb{K}\right), \forall \left(B_{1}, B_{2}\right) \in \left(\mathcal{M}_{p,q}\left(\mathbb{K}\right)\right)^{2}, A\left(B_{1}+B_{2}\right) = AB_{1}+AB_{2}$

We say that the matrix product is distributive with respect to the matrix sum. (iii)

 $\forall A \in \mathcal{M}_{n,p}\left(\mathbb{K}\right), \forall B \in \mathcal{M}_{p,q}\left(\mathbb{K}\right), \forall \alpha \in \mathbb{K}, (\alpha A) B = \alpha \left(AB\right)$

2 Two by two matrices

2.1 Links between matrices and systems

$$\begin{cases} ax + by = c \\ a'x + b'y = c' \end{cases} \Leftrightarrow \begin{bmatrix} a & b \\ a' & b' \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} c \\ c' \end{bmatrix} \Leftrightarrow MX = Y$$

with $M = \begin{bmatrix} a & b \\ a' & b' \end{bmatrix} X = \begin{bmatrix} x \\ y \end{bmatrix} Y = \begin{bmatrix} c \\ c' \end{bmatrix}$

Example 5. Determine the system or find the matrix attached :

1.
$$\begin{cases} 2x + 4y = 5\\ x - y = 3 \end{cases}$$

2.
$$\begin{bmatrix} 6 & 1\\ 2 & 3 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} -1\\ 4 \end{bmatrix}$$

Video : Example 5

2.2 Inverse of a two by two matrix

Definition 5. Let M be a two by two matrix, M is invertible means there exists a matrix N such that

$$MN = NM = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

the inverse matrix of M is denoted M^{-1} and the matrix $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ called identity matrix is denoted I_2 .

Example 6. Show that M and N are inverse :

$$M = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
$$N = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$

Definition 6. Let $M = \begin{bmatrix} a & b \\ a' & b' \end{bmatrix}$, the determinant of M, denoted by detM, is equal to $\det M = ab' - ba'$

Property 5. *M* is invertible if and only if $det(M) \neq 0$

Example 7. Is The matrix $M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ invertible?

Property 6. Let $M = \begin{bmatrix} a & b \\ a' & b' \end{bmatrix}$ an invertible matrix, then

$$M^{-1} = \frac{1}{\det M} \begin{bmatrix} b' & -b \\ -a' & a \end{bmatrix}$$

Example 8. Compute the inverse matrix of M.

 \blacksquare Video : Examples 6, 7, 8

2.3 To solve a system

Consider the system $\begin{cases}
ax + by = c \\
a'x + b'y = c' \\
Let M be the matrix attached to this system, if M is invertible then we get a unique solution <math>(x, y)$:

$$\begin{bmatrix} x \\ y \end{bmatrix} = M^{-1} \begin{bmatrix} c \\ c' \end{bmatrix}$$

Example 9. Solve the following system : $\begin{cases} 2x + y = 1 \\ x + 3y = 1 \end{cases}$

Video : Example 9

Workouts

Exercise 1.

Compute :

1.
$$\begin{pmatrix} 1 & 2 & -3 \\ 0 & -4 & 1 \end{pmatrix} + \begin{pmatrix} 3 & 5 & 1 \\ 1 & -2 & 0 \end{pmatrix}$$

2. $-3\begin{pmatrix} 1 & 2 & -3 \\ 4 & -5 & 6 \end{pmatrix}$

Exercise 2.

Compute
$$AB$$
 and BA with :

$$A = \begin{pmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{pmatrix} \text{ et } B = \begin{pmatrix} 1 & -2 & -5 \\ 3 & 4 & 0 \end{pmatrix}$$

Exercise 3.

Let $A = \begin{pmatrix} a & -a \\ 1 & a+1 \end{pmatrix}$ Determine *a* so that the matrix *A* is invertible, then compute A^{-1} .

Exercise 4. Find two matrices A and B satisfying AB = BA.

Exercise 5.

Solve the following systems using matrix algebra :

1.
$$\begin{cases} x+z=1\\ -x-z=1 \end{cases}$$
 2.
$$\begin{cases} ax+y=b\\ x+2y=1 \end{cases}$$

Exercise 6.

Two students took tennis lessons. One took 16 hours of lessons and made three internship : she paid 558 euros, the other took 18h lessons has two internships and paid 460 euros. Translate the statement above as a system, then under matrix form. Deduce the price of a lesson and an internship.

Exercise 7.

Consider the following circuit :

We get this system : $\begin{cases} \underline{I_1} = (\underline{Y_1} + \underline{Y_2})\underline{V_1} - \underline{Y_2} \\ \underline{I_2} = -\underline{Y_2} \underline{V_1} + (\underline{Y_3} + \underline{Y_2})\underline{V_2} \\ \text{Translate this system in matrix form and deduce the vector} \\ \begin{bmatrix} \underline{V_1} \\ \underline{V_2} \end{bmatrix} \text{ in function of } \begin{bmatrix} \underline{I_1} \\ \underline{I_2} \end{bmatrix}. \end{cases}$

Exercise 8.

Let A and B two two by two matrices. Show that det $AB = \det A \times \det B$.

Exercise 9.

Let A, B and C three square matrices, and B an invertible matrix such that : $A = BCB^{-1}$. Express C based on A and B.

Exercise 10.

let the matrices

$$A = \begin{pmatrix} 4 & 0 & 2 \\ 0 & 4 & 2 \\ 0 & 0 & 2 \end{pmatrix}; J = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & -1 \end{pmatrix}; I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- 1. Find the real numbers a and b such that A = aI + bJ
- 2. Compute J^2
- 3. Compute A^2 , A^3 and A^4 as a linear combination of matrices I and J.