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VECTOR SPACES

Objectives

� Understand the notion of Vector Space.

� Subspaces.

� Understand and �nd Basis.

In this chapter, we use in a generic way a set K which represents either R or C.
E1 × E2 · · · × En = {(x1, x2, . . . , xn) such that xi ∈ Ei}.

Example 1.
Describe R3.

1 Vector spaces

1.1 Groups

Let E be a set equipped with a binary operation ⊕ that combines any two elements of E.

Example 2.
In each case below, take two elements u and v of E, and compute u⊕ v.

� E = R2 and ⊕ is the common addition on R2.
� E = R2 and (x, y)⊕ (x′, y′) = (x+ y′, x′ + y).
� E = R2 and ⊕ is the dot or scalar product.
� E = R and u⊕ v = u× v + (u2 − 1)(v2 − 1)

Video : example

A group, denoted (E,⊕)), is an algebraic structure consisting of a set of elements E equipped
with an operation ⊕ that combines any two elements to form a third element. (The operation
satis�es �ve conditions called the group axioms, namely closure, associativity, commutatitvity,
identity and invertibility.)

(A0)
∀ (u, v) ∈ E2, u⊕ v ∈ E

closure.

(A1)
∀ (u, v) ∈ E2, u⊕ v = v ⊕ u

⊕ is commutative.

(A2)
∀ (u, v, w) ∈ E3, (u⊕ v)⊕ w = u⊕ (v ⊕ w)

⊕ is associative
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(A3)

iii There exists an element, such an element is unique called the identity element for ⊕
, denoted by 0E called the zero vector, such that

∀u ∈ E, 0E ⊕ u = u

(A4) For each element of E, there exists an element, commonly denoted by −u such that

∀u ∈ E, u⊕ (−u) = 0E

. It is called the inverse element. Instead of writting u+ (−u) = 0E on we could write :
u− u = 0E

Example 3.
In each previous example, check if (E,⊕) is or not a commutative group :

Video : closure
Video : commutativity

Do on your own associativity and identity element.

1.2 Vector Space

Every number belonging to K is called a scalar.
Let E be a set endowed with an operation denoted by ⊕ and called vector addition or simply

addition. The second operation, called scalar multiplication takes any scalar λ and any vector
u ∈ E and gives another vector λ� u.

E is endowed with two operations ⊕ et �.
E together with those two operations ⊕ and �, (denoted by (E,⊕,�)) is a vector space

over the �eld K if (E,⊕,�) checks the six following conditions :

(A00)
(E,⊕) is a commutative group.

(M0)
∀α ∈ K,∀u ∈ E,α� u ∈ E

the � law is said to be external. This law is called external because we multiply a scalar
by an element of E.

(M1) Distributivity of scalar multiplication with respect to vector addition :

∀α ∈ K,∀ (u, v) ∈ E2, α� (u⊕ v) = (α� u)⊕ (α� v)

(M2) Distributivity of scalar multiplication with respect to �eld addition

∀ (α, β) ∈ K2,∀u ∈ E, (α + β)� u = (α� u)⊕ (β � u)

(M3) Compatibility of scalar multiplication with �eld multiplication

∀ (α, β) ∈ K2,∀u ∈ E, (αβ)� u = α� (β � u)
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(M4) Identity element of scalar multiplication :

∀u ∈ E, 1� u = u

Remark 1. The usual addition in Rn is denoted +. The usual scalar multiplication in Rn is
denoted by ..

Example 4.

1. Prove that (R2,+, .) is a vector space.

Video : example 4)1)

2. Prove that (R2,+,�) is not a vector space with λ ∈ R, λ(x, y) = (x+ λ, y + λ).

Video : example 4)2)

Remark 2. Please note that the vector space structure ie operations which we endow the set
E, can make it or not, a vector space, as shown in the example above.

De�nition 1.
Elements of the vector space E are called vectors and elements of K are called scalar.

In Rn, we use the notation with an arrow but we won't use it as vectors can be functions.

Proposition 1.
Rn endowed with the common addition + and the common scalar multiplication · is a vector
space over R.

Proposition 2.

1. ∀u ∈ E, 0� u = 0E

2. ∀λ ∈ K, λ� 0E = 0E

3. For all u ∈ E and for all λ ∈ K, λ� u = 0E ⇒ λ = 0 ou u = 0E

4. For all u ∈ E, (−1)� u = −u

Example 5.
Prove the previous proposition (1,2 and 3).

Video : 1
Video : 2
Video : 3

2 Subspaces

De�nition 2.
Let F be a part of a vector space (E,+, ·) over K

We say that F is a subspace of the vector space E
� F is non empty
� F endowed with the two operations + and · of E is itself a vector space.

This de�nition is not very useful as to prove that F is a subspace we have to prove that F
is itself a vector space. Let's introduce another interesting theorem.
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Theorem 3. Let F be a subset of a vector space (E,+, ·)over K
F is a subspace of E if it checks those three conditions :
(i) 0E ∈ F
(ii) ∀ (u, v) ∈ F 2, u+ v ∈ F . If we add any two vectors we end up with a vector of F
(iii) ∀u ∈ F, ∀α ∈ K, α · u ∈ F . If we multiply any vector by a constant we end up with a

vector of F .

Example 6. Prove this theorem.
Video : ex 6

Using this theorem, it will be easier to prove that a subset F of E is a subspace. There
exists another summary version of this theorem

Theorem 4. Let F be a subset of a vector space (E,+, ·)over K
F is a subspace of E if it checks those two conditions :
(i) 0E ∈ F
(ii) ∀ (u, v) ∈ F 2,∀ (α) ∈ K, α · u+ v ∈ F
This is a summary version. You choose either this theorem or the previous one.

Example 7.
Show that the plane of equation 2x− 3y + 2z = 0 is a vector subspace of R3.

Video : ex 7
On your own : get training with exercise 3)

3 Subspaces of R2 and R3

3.1 In R2

Video : subspaces of R2

Remark 3.
R2 can be viewed as a set of points M of coordinates (x, y) in the xy-plane (O,~i,~j). But in
this chapter R2 is seen as a set of vectors ~u whose coordinates are (x, y) in the standard basis
(~i,~j).

Proposition 5.
Let ~u = (a, b) be the direction vector of a straight line D trough the origin, in a basis (~i,~j)

1. D has a cartesian equation : −bx+ ay = 0.

2. D = {(λa, λb), λ ∈ R}.
3. D = Span(~u)

Proposition 6. Subspaces of R2

Subspaces of R2 are {0E}, the straight lines trough the origin and R2.
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3.2 In R3

Video : subspaces of R3

Remark 4.
R3 can be viewed as a set of pointsM of coordinates (x, y, z) in (O,~i,~j,~k). But in this chapter

R3 is seen as a set of vectors ~u whose coordinates are (x, y, z) in th standard basis (~i,~j,~k).

Proposition 7. Plane through the origin
Let ~u = (a, b, c) and ~v = (a′, b′, c′) be two non colinear vectors, in a basis (~i,~j,~k), the plane
trough the origin P spanned by those two vectors

1. has a cartesian equation : (bc′ − cb′)x+ (ca′ − ac′)y + (ab′ − a′b)z = 0

2. P = {(λa+ µa′, λb+ µb′, λc+ µc′), λ ∈ R µ ∈ R}.
3. P = Span(~u,~v)

Proposition 8. Straight line trough the origin
Let ~u = (a, b, c) be the direction vector of a straight line D trough the origin, in a basis (~i,~j,~k)

1. D has a cartesian equation : −bx+ ay = 0and − bz + cy = 0

2. D = {(λa, λb, λc), λ ∈ R}.
3. D = Span(~u)

Proposition 9. subspaces of R3

Video : subspaces of R3

Subspaces of R3 are {0E}, vector lines, vector planes and R3.

Remark 5.
In R3 two vector lines are always coplanar. Parallelism does not make sense.

Example 8.
Give the system of equations of the line of R3 spanned by the vector (2,−1, 3).

Video : ex 8

4 Intersection of subspaces

Proposition 10.
The intersection of two subspaces F and G of a vector space E is a vector space itself.

However the union of two subspaces is not in general a vector subspace.
Generally, let (E,+, ·) be a vector space over K, let I be a non empty set and (Fi)i∈I a

familly of subspaces of E. The intersection F =
⋂
i∈I

Fi is a subspace of E.

Example 9.

1. Check on your own that in R3,the intersection of two subspaces of a vectoriel space is a
subspace.

2. Prove that the intersection of two subspaces of a vector space is a subspace. Video :
ex 92)

3. Prove that the union of two subspaces of a vector space is not a subspace in general.
Video : ex 93)
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5 Sum of subspaces

5.1 De�ntion and properties

De�nition 3.
Let E be a vector space over K, let F and G be two subspaces of E. We can perform sum
operation, denoted by F +G, this is the set of vectors which are the sum of a vector of F and
a vector of G :

F +G = {u ∈ E/u = f + g, f ∈ F, g ∈ G}

Remark 6. Every element of F +G is a sum of an element of F and an element of G, which
means u ∈ F + G ⇔ ∃f ∈ F, ∃g ∈ G tels que u = f + g. This way of writting is not unique
generally.

Example 10.
Let D and D′ be two straight lines trough the origin of R3. Find D +D′.

Video : ex 10

Theorem 11.
The sum of two sub vector spaces of a vector space E is a subspace of E.

Example 11.
Prove this theorem.

Video : ex 11

Remark 7.
Be careful not to be confused with ths sum notation + and avoid mistakes :

1. F + F = F

2. By setting −F = {−x, x ∈ F}, we get −F = F

3. If F ⊂ G, F +G = G+G even though F 6= G

5.2 Direct sum

De�nition 4.
et E be a vector space over K, F and G two subspaces of E. The sum F +G is direct if every
vector of F +G has a unique expression as a sum of an element of F and an element of G.

If the sum between F and G is dierct, we use this notation F +G = F ⊕G

Theorem 12.
Let E be a vector space over K, F and G two subspaces of E.

Then : F +G is direct ⇔ F ∩G = {0E}

Example 12.
Prove this theorem.

Video : ex 12 part 1
Video : ex 12 part 2

Example 13.
For the following straight lines and planes trough the origin �nd F +G and precise if the sum
is direct or not.

6

https://www.loom.com/share/2c41f8cb1c2a460b9c337a8d69885329 
https://www.loom.com/share/c9a7e5822946494187836c515a9125ec 
https://www.loom.com/share/12a58e1f4faa40bd89197e0a5fa9a6f5 
https://www.loom.com/share/e6faf873a14049c5ad20d8af5c236a78 


1A M2.1 2020-2021

5.3 Complementary subspaces

De�nition 5.
Let E be a vector-space over K, F and G two subspaces of E. F et G dare called complementary
subspaces in E if F +G is direct and equal to E. Thus F and G are complements in E ⇔ E =
F ⊕G.

We say that G is a complement of F .

Two subspaces F and G of a vector space over K are complementary subspaces in E if and
only if

F ∩G = {0E} F +G = E

Theorem 13.
Every vector subspace of E has a complement.

Remark 8.

1. A subspace F of E may have several complements. Let K = R and E = R2, the subspace
F = R× {0} de E has in�nitely many complementary subspaces in E, of the shape Rx
with x ∈ E −F : F = V ect((1, 0)) then D = V ect(2, 1) is a complement of F in R2 and
so is D′ = V ect(1, 0)

2. In �nite dimension, all subspace has at least one complementary subspace.

3. The existence of a complementary subspace in a vector space is equivalent to the axiom
of choice

Theorem 14.
Let F and G be two subspaces of a vector space E. Then F and G are complements in E if and
only if all vector u ∈ E has a unique expression u = f + g f ∈ F and g ∈ G. Every element of
F +G has a unique expression as an element of F and an element of G.

Remark 9. Be careful, two subspaces may be complementary subspaces in a vector space but
not in another one. For instance two straight lines trough the origin of R3 are complements in
the half plane they span but not in the whole space R3, as even their sum is direct in R3 their
direct sum is not R3.

Example 14. Let's consider E = R3. Prove that F =
{
(x, y, z) ∈ R3/x− y + z = 0

}
and

G =
{
(x, x, x) ∈ R3

}
are complements in E.

Video : ex 14 part 1
Video : ex 14 part 2

6 Finite vector families

6.1 Spanning family

De�nition 6.
Let E be a vector space and u1, . . . , un, n vectors of E.

A vector u de E is a linear combination of u1, . . . , un, if there exists n scalars α1, ..., αn
of K such that

u = α1u1 + · · ·+ αnun

.
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De�nition 7.
Let E be a vector space over Kl. The set of vectors u1, . . . , un is a spanning family of E if E
is the set of all linear combinations of u1, u2, . . . , un. E is called the vector space spanned by
u1, . . . , un, and we denote it E = Span(u1, . . . , un).

u ∈ Span(u1, u2, . . . , un)⇔ ∃(α1, . . . , αn) ∈ Kn

u = α1u1 + · · ·+ αnun

Example 15. Let u and v be two vectors of R3. What can you say about Vect(u, v) ?
Video : ex 15

Example 16. Find two spanning families of the subspace E of R3 where E is the set of vectors
u = (x, y, z) such that : x− y + z = 0.

Video : ex 16

Theorem 15. Let E be a vector-space over K and F = {u1, u2, ui . . . , uj, un} a spanning family
of E. The following families are also spanning families of E :

1. The family get buy switching two vectors of F
2. The family get by multipliying one vector of F by a non zeo scalar.

3. The family get by adding to one vector of F a linear combination of other vectors of F .
4. The family get by removing in F a vector which is a a linear combination of other vectors

of F .

Example 17.
Write the previous theorem in mathematics language.

Video : ex 17

Proposition 16.
If F = Vect{u1, u2, ..., un} etG = Vect{v1, v2, ..., vp}, then F+G = Vect{u1, u2, ..., un, v1, v2, ..., vp}

Example 18.
Let u1, u2, u3 be three vectors in a vector space E. What is Span(u1, u2) + Span(u3) ?

Video : ex 18

6.2 Linearly indepedence

De�nition 8.
Let F = (u1, u2, . . . , un) be a family of vectors in a vector space E. We say that this family
is linearly independent or that the vectors u1, u2, . . . , un are linearly independent, if
and only if a linear combination of those vectors which is zero implies that all coe�cients are
zero.Which means :

∀(λ1, λ2, . . . , λn) ∈ Kn, λ1u1 + λ2u2 + · · ·+ λnun = 0⇒

λ1 = λ2 = · · · = λn = 0

Example 19.
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1. In the vector space R3 over R, prove that the family ((1, 2, 0), (0, 1, 2)) is linearly inde-
pendent.

2. In the vector space of polynomials with real coe�cients over R, prove that the family
1, X,X − 1 is not linearly independent.

Video : ex 19

Remark 10.
Every sub-family of a linearly independent family is linear independent.

6.3 Linearly dependence

De�nition 9.
Let F = (u1, u2, . . . , un) be a family of vectors in a vector space E. This family is linearly
dependent or the vectors u1, u2, . . . , un are linearly dependent,if and only if it is not linear-
lyindependent. Which means : ∃(λ1, λ2, . . . , λn) ∈ Kn non all zero such that λ1u1+λ2u2+ · · ·+
λnun = 0

Particular cases

1. If n = 1 then the set (u1) is linearly dependent if u1 = 0.

2. If n = 2 then the set (u1, u2) is linearly dependent iif u1 et u2 are collinear.

3. If n = 3 then the set (u1, u2, u3) is linearly dependent iif u1, u2 et u3 are coplanar.

Theorem 17.
A family F = (u1, u2, . . . , un) is linearly dependent if one of those vectors is a linear combination
of the others

6.4 Basis

De�nition 10.
A family F = (e1, . . . , en) of vectors in a vector space E is a basis of E if and only if this family
is both a spannig family of E and linearly independent.

De�nition 11.
A standard basis of a vector space E is a very simple basis. We speak about the canonical
basis.

Example 20.
� In R2, e1 = (0, 1) e2 = (1, 0) is the standard basis
� In the set of polynomials of degree less or equal than 2, (1, X,X2) is the standard basis.

Theorem 18.
Let B = (e1, . . . , en) be a basis of a vector space E over K , u any vector of E. There exists a
unique family (x1, . . . , xn) ∈ Kn such that : u = x1e1 + · · ·+ xnen.

Those coe�cients (x1, . . . , xn) are the coordinates of u in the basis B = (e1, . . . , en). It is
unique.

Particular cases
Let F = (e1, . . . , en) be a basis of E.

1. If n = 1 then E is a straight line trough zero

2. If n = 2 then E is a plane trough zero.
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6.5 Spanning and Linearly independant families

Theorem 19. The Exchange Lemma
Let E be a vector-space over K and let G = {x1, x2, ..., xp} be a spanning vector of E, and
L = {y1, y2, ..., yr} be a linearly independent family of E then :

r 6 p

there exists one way to replace r des vectors of G by vectors of L.

7 Finite dimension vector space

7.1 De�nitions and properties

De�nition 12.
Let E be a vector space over K. E is of �nite dimension if and only if E has a �nite basis.

Theorem 20. Dimension theorem
In a non zero vector space E over K of �nite dimension all bases of a vector space have equally
many elements. This �nite number of elementsd de�nes the dimension of the space E and is
denoted dimE.

By convention {0E} has for dimension zero.

Example 21.
Are those subspaces �nite or not ? If �nite, give their dimension.

1. R2

2. A plane trough the origin.

3. The set of continuous functions on an interval.

Proposition 21. Rn is a vector space of dimension n over R

Remark 11. The dimension of a vector space depends on the K on which we are working.

Theorem 22. Basis adapted to a direct sum
Let F and G be two vector subspaces of the K vector space E.
We give a B = (f1, . . . , fp) basis of F and B′ = (g1, . . . , gq) a basis of G. So :

1. F ∩G = {0} ⇔ the set (f1, . . . , fp, g1, . . . , gq) is linearly independant in E.

2. F +G = E ⇔ the set (f1, . . . , fp, g1, . . . , gq) spans E.

3. F ⊕G = E ⇔ the set (f1, . . . , fp, g1, . . . , gq) is a basis of E.

Example 22.
Prove the above theorem.

Theorem 23. Incomplete basis theorem
Let E be a vector space over K of ifnite dimension. Every family of vectors of E linearly
independent is a sub-family of a basis of E.

We are able to add suitably choosen vectors to a linearly independent family to get a basis
of E.

This means that we can gradually add vectors to a suitably chosen linearly independant set
in order to construct a base of E.
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7.2 Dimension and cardinality

Theorem 24.
Let E be a vector space over K, of �nite dimension n ∈ N∗. Let F = (u1, . . . , up) be a family
of vectors in E.

1. If F is linearly independent then p 6 n.

2. If F is a spanning family then p > n.

3. If F is either linearly independent or a spanning family and if p = n then F is a basis
of E.

Example 23. Justify the above theorem.

Corollary 25.

Let F and G be two vector subspaces of the vector space E such that F ⊂ G and dim
F=dimG so F = G

Example 24.

Justify the above corollary.

8 Finite dimension vector subspaces

8.1 Dimension of a vector subspace

The notions of linearly independence and spanning family are the same as we place in E or
in F vector subspace of the vector space E.

Theorem 26.
Every vector subspace F of a K vector space E of �nite dimension is of �nite dimension and
we have : dimF 6 dimE

Theorem 27 (Grassmann Formula).
Let E be a vector space and F and G two vector subspaces of E then

dimF +G = dimF + dimG− dimF ∩G

Example 25.
Check the formula on the following examples.

8.2 Rank of a vector set

De�nition 13.
Let E be a �nite dimensional vector space.The rank of a family of vectors of E is the dimension
of the subspace spanned by this family. We denote it by rg.

rg(u1, . . . , un) = dimSpan(u1, . . . , un)

11
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Example 26.
Let u = (2, 3, 5), v = (4, 6, 10), et w = (−2,−3,−5). Find rg(u, v, w).

Theorem 28.
Let (u1, . . . , up) be a family of vectors in a vector space E K.

� If dimE = n then we get : rg(u1, . . . , up) 6 n
� rg(u1, . . . , up) 6 p
� (u1, . . . , up) is linearly independent if and only if its rank is p.

8.3 Sub-spaces complements in �nite dimension

Theorem 29.
Let E be a �nite-dimensional vector space. Let F and G be two complement subspaces in E.
So :

dimF + dimG = dimE

Remark 12.
Be careful, the converse is false as the following counterexample shows : F = V ect((1, 1)) et
F = G.

Theorem 30. Characterization theorem
Let E be a �nite-dimensional vector space n.

1. If dimF + dimG = dimE and if F ∩G = {0} then F and G are complements in E.

2. If dimF + dimG = dimE and if F +G = E then F and G are complements in E.

12
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Exercises

TD 1-3

Exercise 1.

1. Let E = R∗+ × R. We de�ne on E the addition by (a, b) ⊕ (c, d) = (ac, b + d) and the
scalar law by λ (a, b) =

(
aλ, λb

)
. Show that (E,+, .) is a R vector space.

2. On E = R2, we de�ne the following operations (a, b) ⊕ (c, d) = (a + c, b + d) and
λ� (a, b) = (λa, 0). Show that E with those two operations is not a R vector space.

3. The set of the real bijective functions from R in R endowded with the internal law ◦ and
the multiplication by a scalar is a vector space on R ?

Exercise 2.
Show that the set of continuous functions with the usual operation + and · on an interval I
⊂ R is a vector space on R

Exercise 3.
Let E = R3. Are the following sub-sets vector subspaces of E ?

1. The set of triplets (x; y; z) such that x+ y = 0.

2. The set of triplets (x; y; z) such that x = 0 ou y = 0.

3. The set of triplets (x; y; z) such that x2 + y2 + z2 = 10.

Exercise 4.
We denote by E the vector space of real-valued functions functions (from R to R), equipped
with the addition and the multiplication by a real number. Are the following subsets subspaces
of E ?

1. The set of polynomials of the second degree.

2. The set of functions such that f (1) = 2f (0).

3. The set of functions such that f (1)− f (0) = 1.

4. The functions such that, a ∈ R being set, f (x) = f (a− x) for all x ∈ R.
5. The set of di�erentiable functions over an interval I.

6. The set of solutions of a �rst order linear di�erential equation.

7. The set of polynomials of degrees less than or equal to n.

Exercise 5.
Indicate without calculation the nature of the following sets :

1. E1 = {(x, y) ∈ R2|x− 2y = 0}.
2. E2 = {(3λ,−λ)|λ ∈ R}
3. E3 = {(x, y, z) ∈ R3|x− 2y = 0}
4. E4 = {(x, y, z) ∈ R3|x− 2y = 0 and y + z = 0}
5. E4 = {(x, y, z) ∈ R3|x− 2y = 0 or y + z = 0}
6. E5 = {(3λ,−λ, 2λ)|λ ∈ R}

Exercise 6. (Optional)
Let E be a K vector space and F and G two subspaces Vector of E.

Show that F ∪G is a vector subspace of E if and only if F ⊂ G or G ⊂ F .
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Exercise 7.
Let F and G be two vector spaces of a vector space E.

1. What about a ∈ E if F ∩G = {a}.
2. What about F and G if F ∪G = E.

Exercise 8.
Let F = f : R→ R, f(x) = ax+ b, a ∈ R, b ∈ R and

G = f : R→ R, f(x) = ax2 + bx, a ∈ R, b ∈ R
1. Show that F and G are vector subspaces of the vector space of continuous functions.

2. Find F ∩G and verify that F ∩G is a vector space.

3. Find F ∪G. Is F ∪G a vector space ?

4. Same question with F = f : R→ R, f(x) = ax+ b, a ∈ R, b ∈ R and

G = f : R→ R, f(x) = ax2 + bx+ c, a ∈ R, b ∈ R, b ∈ R

Exercise 9.
Is this set (x; y; z) such that x = 0 and 2x+ y = 0 a vector subspace of E ?

Exercise 10.
Let P = {(x, y, z) ∈ R3|x + y + z = 0} et D = {(x, y, z) ∈ R3|x = y = z}. We admit that P
and D are subspaces of R3.

1. Determine P ∩D.

2. Let
−→
k a unitary vector of D and let −→u be a vector of R3.

(a) Check that −→u − (
−→
k .−→u )

−→
k is in P

(b) Deduce that P and D are complementary subspaces.

Exercise 11.
Let E be the set of applications of R in R. Consider the sets :

P = {f ∈ E/f is an even function } et I = {f ∈ E/f is an odd function }
1. Show that P and I are complementary subspaces of E

2. Give the decomposition in P⊕, I of the following functions :x 7→ ex ; x 7→ ( 1 + x ) 6 ;
x 7→ sin ( x ).

Exercise 12.
Let F and G be two vector subspaces of a vector space E.

1. What can we say about F and G if ∀x ∈ E,∃(a, b) ∈ F ×G | x = a+ b.

2. What can we say about F and G if ∃x ∈ E|∃!(a, b) ∈ F ×G| x = a+ b

TD6

Exercise 13.
Let u and v be two vectors of a vector space E, compare the following sets :

A = Vect(u, v) B = Vect(−u, v) C = Vect(u+ 2v, v) D = Vect(u) D = Vect(u) + Vect(v)

14



1A M2.1 2020-2021

Exercise 14.
Let u, v be two vectors of a vector space E, put w = u− 2v.

1. Is (u, v, w) linearly independant ?

2. We suppose that u and v are non-collinear vectors. Is the family (u, v) linearly indepen-
dant ?

3. We suppose that u, v and w are not collinear two by two. Is the family (u, v, w) linearly
independant ?

Exercise 15.
Let E be a vector space and B = (e1, e2, e3) a basis of E

1. u = 2(e3 − e1) + 5e2, determine the coordinates of v in the B basis

2. u(2,−3, 1), v(1, 2, 3) w(−1,−9,−8). Are the vectors u, v and w linearly independant ?

3. Same question for u(1,−1, 1), v(2, 1, 3) w(−1, 2, 4).

Exercise 16.
∀u ∈ R2, show that u is a linear combination of (1, 1) and (3, 1).

Exercise 17.
In R3 we consider the triplets : a = (−1; 2; 1 ) , b = ( 0; 1;−1 ) , u = ( 1; 0;−3 )

and v = (−2; 5; 1 ).
1. Determine x so that (x; 1; 2 ) is in Vect ( a, b ).
2. Show that Vect ( a, b ) = Vect (u, v ).

TD7-8-9

Exercise 18.
Let F = (e1, . . . , en) and F = vect(F).

1. Is F a basis of F ?

2. What necessary and su�cient condition must we have on F so that F is a basis of F ?

Exercise 19.
Do the following sets span E ?

� (1,1), (3,1) with E = R2

� (1,0,2), (1,2,1) with E = R3

Are the following sets linearly independant ?
� (1,1),(1,2) in R2

� (2, 3),(-6,9) in R2

� (1,3,1) , (1,3,0), (0,3,1) in R3

� (1,3), (-1,-2), (0,1) in R2

Exercise 20.
Let (u, v, w) ba abasis of a R vector space E. Among the following sets, which ones are spanning,
linearly independant or basis of E.

1. (u, u− 2v + w,−v + w)

2. (u− v, v − w,w − u)

15



1A M2.1 2020-2021

3. (u, u− 2v + w)

Exercise 21.

1. In R3 give an example of a linearly independant set, wich is not spanning E

2. In R3 give an exemple of a non linearly independant spanning set of E.

Exercise 22.
Show that R2 = Vect (( 0; 4 ) , (−1; 2 ) , (−1;−2 )).
Is the decomposition of an element of R2 unique ?

Exercise 23.
Consider the vectors of R4 : u = (1,−2, 4, 1) and v = (1, 0, 0, 2).

1. Determine Vect (u, v).
2. Complete the set (u, v) adding two vectors of the canonical basis of R4 in order to have

a basis of R4.

Exercise 24.
Are the following vector spaces �nite or in�nite ? Give dimension of vector spaces of �nite
dimension.

1. The subspace of R3 whose equation is 2x− 3y = 0.

2. The solutions of an homogeneous second-order di�erential equation with constant coef-
�cients.

3. Polynomials of degrees less than or equal to n.

4. The set of polynomials.

Exercise 25.

1. Find the dimension of C considered as a R vector space.

2. Find the dimension of C considered as a C vector space.

Exercise 26.
Let's consider the R vector space E = R3. In each case below, �nd a basis and an complementary
subspace of the vector subspace F such that :

1. F = V ect(−→u ,−→v ) where −→u = (1, 1, 0) and −→v = (2, 1, 1).

2. F = V ect(−→u ,−→v ,−→w ) where −→u = (−1, 1, 0),−→v = (2, 0, 1) and −→w = (1, 1, 1).

3. F = {(x, y, z) ∈ R3/x− 2y + 3z = 0}

Exercise 27.
Let F and G be two sets of R3 de�ned by : F =

{
(x, y, z) ∈ R3/x+ y + z = 0

}
and G =

{(λ, λ, λ) /λ ∈ R}
1. Show that F and G are subspaces of R3 and give a basis for each one.

2. Show that F and G are complements.

Exercise 28.
Consider the vectors of R4 : v1 = (2, 1, 3, 4) , v2 = (0, 1, 0, 1), v3 = (2, 2, 3, 0) and
v4 = (2,−1, 3, 7)

Let E be a subspace of R4 spanned by : ( v1, v2, v3, v4 ).
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1. Show that ( v1, v2, v3 ) is a basis of E and give the coordinates of v4 in that basis.

2. Determine a vector v5 so that ( v1, v2, v3, v5 ) be a basis of R4.

3. Deduce a complement F of E in R4.

Exercise 29.
In R4 consider the following vectors −→u = (1, 0, 1, 0), −→v = (0, 1,−1, 0),
−→w = (1, 1, 1, 1), −→x = (0, 0, 1, 0) and −→y = (1, 1, 0,−1). Let F = V ect(−→u ,−→v ,−→w ) and
G = V ect(−→x ,−→y ).

Give the dimensions of F,G, F +G,F ∩G ?

Exercise 30.
Determine the rank of the following set :

In R4, F = { v1, v2, v3, v4 } with v1 = (0, 1, 1, 1) , v2 = (1, 0, 1, 1), v3 = (1, 1, 0, 1) and
v4 = (1, 1, 1, 0)

Exercise 31.
Determine, according to the value of x, the rank of the following set :
x1 = (1, x,−1) , x2 = (x, 1, x) , x3 = (−1, x, 1)
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