

VECTOR SPACES

Objectives

- Understand the notion of Vector Space.
- Subspaces.
- Understand and find Basis.

In this chapter, we use in a generic way a set \mathbb{K} which represents either \mathbb{R} or \mathbb{C} . $E_1 \times E_2 \cdots \times E_n = \{(x_1, x_2, \dots, x_n) \text{ such that } x_i \in E_i\}.$

Example 1.

Describe \mathbb{R}^3 .

1 Vector spaces

1.1 Groups

Let E be a set equipped with a binary operation \oplus that combines any two elements of E.

Example 2.

In each case below, take two elements u and v of E, and compute $u \oplus v$. — $E = \mathbb{R}^2$ and \oplus is the common addition on \mathbb{R}^2 . — $E = \mathbb{R}^2$ and $(x, y) \oplus (x', y') = (x + y', x' + y)$. — $E = \mathbb{R}^2$ and \oplus is the dot or scalar product.

- $E = \mathbb{R}$ and $u \oplus v = u \times v + (u^2 - 1)(v^2 - 1)$

A group, denoted (E, \oplus)), is an algebraic structure consisting of a set of elements E equipped with an operation \oplus that combines any two elements to form a third element. (The operation satisfies five conditions called the group axioms, namely closure, associativity, commutativity, identity and invertibility.)

(A0)

 $\forall (u, v) \in E^2, u \oplus v \in E$

closure.

(A1)

$$\forall (u, v) \in E^2, u \oplus v = v \oplus u$$

 \oplus is commutative.

(A2)

 $\forall (u, v, w) \in E^3, (u \oplus v) \oplus w = u \oplus (v \oplus w)$

 \oplus is associative

(A3)

iii There exists an element, such an element is unique called **the identity element** for \oplus , denoted by 0_E called the zero vector, such that

$$\forall u \in E, 0_E \oplus u = u$$

(A4) For each element of E, there exists an element, commonly denoted by -u such that

$$\forall u \in E, u \oplus (-u) = 0_E$$

. It is called the inverse element. Instead of writting $u + (-u) = 0_E$ on we could write : $u - u = 0_E$

Example 3.

In each previous example, check if (E, \oplus) is or not a commutative group :

🔎 Video : closure

Video : commutativity

Do on your own associativity and identity element.

1.2 Vector Space

Every number belonging to \mathbb{K} is called a scalar.

Let E be a set endowed with an operation denoted by \oplus and called vector addition or simply addition. The second operation, called scalar multiplication takes any scalar λ and any vector $u \in E$ and gives another vector $\lambda \odot u$.

E is endowed with two operations \oplus et \odot .

E together with those two operations \oplus and \odot , (denoted by (E, \oplus, \odot)) is a vector space over the field \mathbb{K} if (E, \oplus, \odot) checks the six following conditions :

(A00)

 (E, \oplus) is a commutative group.

(M0)

$$\forall \alpha \in \mathbb{K}, \forall u \in E, \alpha \odot u \in E$$

the \odot law is said to be external. This law is called external because we multiply a scalar by an element of E.

(M1) Distributivity of scalar multiplication with respect to vector addition :

$$\forall \alpha \in \mathbb{K}, \forall (u, v) \in E^2, \alpha \odot (u \oplus v) = (\alpha \odot u) \oplus (\alpha \odot v)$$

(M2) Distributivity of scalar multiplication with respect to field addition

$$\forall (\alpha, \beta) \in \mathbb{K}^2, \forall u \in E, (\alpha + \beta) \odot u = (\alpha \odot u) \oplus (\beta \odot u)$$

(M3) Compatibility of scalar multiplication with field multiplication

$$\forall (\alpha, \beta) \in \mathbb{K}^2, \forall u \in E, (\alpha\beta) \odot u = \alpha \odot (\beta \odot u)$$

(M4) Identity element of scalar multiplication :

$$\forall u \in E, 1 \odot u = u$$

Remark 1. The usual addition in \mathbb{R}^n is denoted +. The usual scalar multiplication in \mathbb{R}^n is denoted by ..

Example 4.

- Prove that (ℝ², +, .) is a vector space.
 ✓ Video : example 4)1)
- 2. Prove that $(\mathbb{R}^2, +, \odot)$ is not a vector space with $\lambda \in \mathbb{R}$, $\lambda(x, y) = (x + \lambda, y + \lambda)$. Video : example 4)2)

Remark 2. Please note that the vector space structure is operations which we endow the set E, can make it or not, a vector space, as shown in the example above.

Definition 1.

Elements of the vector space E are called **vectors** and elements of \mathbb{K} are called **scalar**.

In \mathbb{R}^n , we use the notation with an arrow but we won't use it as vectors can be functions.

Proposition 1.

 \mathbb{R}^n endowed with the common addition + and the common scalar multiplication \cdot is a vector space over \mathbb{R} .

Proposition 2.

- 1. $\forall u \in E, \ 0 \odot u = 0_E$
- 2. $\forall \lambda \in \mathbb{K}, \ \lambda \odot 0_E = 0_E$
- 3. For all $u \in E$ and for all $\lambda \in \mathbb{K}$, $\lambda \odot u = 0_E \Rightarrow \lambda = 0$ ou $u = 0_E$
- 4. For all $u \in E$, $(-1) \odot u = -u$

Example 5.

Prove the previous proposition (1, 2 and 3).

```
✓ Video : 1
✓ Video : 2
✓ Video : 3
```

2 Subspaces

Definition 2.

Let F be a part of a vector space $(E, +, \cdot)$ over \mathbb{K}

We say that F is a subspace of the vector space E

- -F is non empty
- F endowed with the two operations + and \cdot of E is itself a vector space.

This definition is not very useful as to prove that F is a subspace we have to prove that F is itself a vector space. Let's introduce another interesting theorem.

Theorem 3. Let F be a subset of a vector space $(E, +, \cdot)$ over K

- F is a subspace of E if it checks those three conditions :
- (i) $0_E \in F$
- (ii) $\forall (u, v) \in F^2, u + v \in F$. If we add any two vectors we end up with a vector of F
- (iii) $\forall u \in F, \forall \alpha \in \mathbb{K}, \alpha \cdot u \in F$. If we multiply any vector by a constant we end up with a vector of F.

Example 6. Prove this theorem.

💭 Video : ex 6

Using this theorem, it will be easier to prove that a subset F of E is a subspace. There exists another summary version of this theorem

Theorem 4. Let F be a subset of a vector space $(E, +, \cdot)$ over \mathbb{K}

F is a subspace of E if it checks those two conditions :

(i) $0_E \in F$

(ii) $\forall (u, v) \in F^2, \forall (\alpha) \in \mathbb{K}, \alpha \cdot u + v \in F$

This is a summary version. You choose either this theorem or the previous one.

Example 7.

Show that the plane of equation 2x - 3y + 2z = 0 is a vector subspace of \mathbb{R}^3 .

 \blacksquare Video : ex 7

On your own : get training with exercise 3)

$\textbf{3} \quad \textbf{Subspaces of } \mathbb{R}^2 \textbf{ and } \mathbb{R}^3$

3.1 In \mathbb{R}^2

 $\overset{\mbox{\tiny \ensuremath{\overset{\scriptstyle\bullet}}{=}}}{\mbox{\small Video}}$: subspaces of \mathbb{R}^2

Remark 3.

 \mathbb{R}^2 can be viewed as a set of **points** M of coordinates (x, y) in the xy-plane (O, \vec{i}, \vec{j}) . But in this chapter \mathbb{R}^2 is seen as a set of **vectors** \vec{u} whose coordinates are (x, y) in the standard basis (\vec{i}, \vec{j}) .

Proposition 5.

Let $\vec{u} = (a, b)$ be the direction vector of a straight line D trough the origin, in a basis (\vec{i}, \vec{j})

1. D has a cartesian equation : -bx + ay = 0.

- 2. $D = \{(\lambda a, \lambda b), \lambda \in \mathbb{R}\}.$
- 3. $D = Span(\vec{u})$

Proposition 6. Subspaces of \mathbb{R}^2

Subspaces of \mathbb{R}^2 are $\{0_E\}$, the straight lines trough the origin and \mathbb{R}^2 .

3.2 In \mathbb{R}^3

 \mathbf{I} Video : subspaces of \mathbb{R}^3

Remark 4.

 \mathbb{R}^3 can be viewed as a set of **points** M of coordinates (x, y, z) in $(O, \vec{i}, \vec{j}, \vec{k})$. But in this chapter \mathbb{R}^3 is seen as a set of **vectors** \vec{u} whose coordinates are (x, y, z) in the standard basis $(\vec{i}, \vec{j}, \vec{k})$.

Proposition 7. Plane through the origin

Let $\vec{u} = (a, b, c)$ and $\vec{v} = (a', b', c')$ be two non colinear vectors, in a basis $(\vec{i}, \vec{j}, \vec{k})$, the plane trough the origin P spanned by those two vectors

- 1. has a cartesian equation : (bc' cb')x + (ca' ac')y + (ab' a'b)z = 0
- 2. $P = \{ (\lambda a + \mu a', \lambda b + \mu b', \lambda c + \mu c'), \lambda \in \mathbb{R} \mid \mu \in \mathbb{R} \}.$
- 3. $P = Span(\vec{u}, \vec{v})$

Proposition 8. Straight line trough the origin

Let $\vec{u} = (a, b, c)$ be the direction vector of a straight line D trough the origin, in a basis $(\vec{i}, \vec{j}, \vec{k})$

1. D has a cartesian equation : -bx + ay = 0 and -bz + cy = 0

- 2. $D = \{ (\lambda a, \lambda b, \lambda c), \lambda \in \mathbb{R} \}.$
- 3. $D = Span(\vec{u})$

Proposition 9. subspaces of \mathbb{R}^3

 \mathbf{I} Video : subspaces of \mathbb{R}^3

Subspaces of \mathbb{R}^3 are $\{0_E\}$, vector lines, vector planes and \mathbb{R}^3 .

Remark 5.

In \mathbb{R}^3 two vector lines are always coplanar. Parallelism does not make sense.

Example 8.

Give the system of equations of the line of \mathbb{R}^3 spanned by the vector (2, -1, 3).

₩ Video : ex 8

4 Intersection of subspaces

Proposition 10.

The intersection of two subspaces F and G of a vector space E is a vector space itself.

However the union of two subspaces is not in general a vector subspace.

Generally, let $(E, +, \cdot)$ be a vector space over \mathbb{K} , let I be a non empty set and $(F_i)_{i \in I}$ a familly of subspaces of E. The intersection $F = \bigcap F_i$ is a subspace of E.

Example 9.

- 1. Check on your own that in \mathbb{R}^3 , the intersection of two subspaces of a vectorial space is a subspace.
- 2. Prove that the intersection of two subspaces of a vector space is a subspace. $\stackrel{\text{\tiny \ensuremath{\leftarrow}}}{=}$ Video : ex 92)
- 3. Prove that the union of two subspaces of a vector space is not a subspace in general. Video : ex 93)

5 Sum of subspaces

5.1 Definiton and properties

Definition 3.

Let E be a vector space over \mathbb{K} , let F and G be two subspaces of E. We can perform sum operation, denoted by F + G, this is the set of vectors which are the sum of a vector of F and a vector of G :

$$F + G = \{u \in E/u = f + g, f \in F, g \in G\}$$

Remark 6. Every element of F + G is a sum of an element of F and an element of G, which means $u \in F + G \Leftrightarrow \exists f \in F, \exists g \in G$ tels que u = f + g. This way of writting is not unique generally.

Example 10.

Let D and D' be two straight lines trough the origin of \mathbb{R}^3 . Find D + D'.

Video : ex 10

Theorem 11.

The sum of two sub vector spaces of a vector space E is a subspace of E.

Example 11.

Prove this theorem.

🔎 Video : ex 11

Remark 7.

Be careful not to be confused with the sum notation + and avoid mistakes :

- 1. F + F = F
- 2. By setting $-F = \{-x, x \in F\}$, we get -F = F
- 3. If $F \subset G$, F + G = G + G even though $F \neq G$

5.2 Direct sum

Definition 4.

et E be a vector space over \mathbb{K} , F and G two subspaces of E. The sum F + G is direct if every vector of F + G has a unique expression as a sum of an element of F and an element of G.

If the sum between F and G is dierct, we use this notation $F + G = F \oplus G$

Theorem 12.

Let E be a vector space over \mathbb{K} , F and G two subspaces of E. Then : F + G is direct $\Leftrightarrow F \cap G = \{0_E\}$

Example 12.

```
Prove this theorem.

Video : ex 12 part 1

Video : ex 12 part 2
```

Example 13.

For the following straight lines and planes trough the origin find F + G and precise if the sum is direct or not.

5.3 Complementary subspaces

Definition 5.

Let E be a vector-space over \mathbb{K} , F and G two subspaces of E. F et G dare called complementary subspaces in E if F + G is direct and equal to E. Thus F and G are complements in $E \Leftrightarrow E = F \oplus G$.

We say that G is a complement of F.

Two subspaces F and G of a vector space over \mathbbm{K} are complementary subspaces in E if and only if

$$F \cap G = \{0_E\} \quad F + G = E$$

Theorem 13.

Every vector subspace of E has a complement.

Remark 8.

- 1. A subspace F of E may have several complements. Let $\mathbb{K} = \mathbb{R}$ and $E = \mathbb{R}^2$, the subspace $F = \mathbb{R} \times \{0\}$ de E has infinitely many complementary subspaces in E, of the shape $\mathbb{R}x$ with $x \in E F : F = Vect((1,0))$ then D = Vect(2,1) is a complement of F in \mathbb{R}^2 and so is D' = Vect(1,0)
- 2. In finite dimension, all subspace has at least one complementary subspace.
- 3. The existence of a complementary subspace in a vector space is equivalent to the axiom of choice

Theorem 14.

Let F and G be two subspaces of a vector space E. Then F and G are complements in E if and only if all vector $u \in E$ has a unique expression u = f + g $f \in F$ and $g \in G$. Every element of F + G has a unique expression as an element of F and an element of G.

Remark 9. Be careful, two subspaces may be complementary subspaces in a vector space but not in another one. For instance two straight lines trough the origin of \mathbb{R}^3 are complements in the half plane they span but not in the whole space \mathbb{R}^3 , as even their sum is direct in \mathbb{R}^3 their direct sum is not \mathbb{R}^3 .

Example 14. Let's consider $E = \mathbb{R}^3$. Prove that $F = \{(x, y, z) \in \mathbb{R}^3 | x - y + z = 0\}$ and $G = \{(x, x, x) \in \mathbb{R}^3\}$ are complements in E.

♥ Video : ex 14 part 1
♥ Video : ex 14 part 2

6 Finite vector families

6.1 Spanning family

Definition 6.

•

Let E be a vector space and u_1, \ldots, u_n , n vectors of E.

A vector u de E is a **linear combination** of u_1, \ldots, u_n , if there exists n scalars $\alpha_1, \ldots, \alpha_n$ of \mathbb{K} such that

$$u = \alpha_1 u_1 + \dots + \alpha_n u_n$$

Definition 7.

Let E be a vector space over Kl. The set of vectors u_1, \ldots, u_n is a spanning family of E if E is the set of all linear combinations of u_1, u_2, \ldots, u_n . E is called the vector space spanned by u_1, \ldots, u_n , and we denote it $E = Span(u_1, \ldots, u_n)$.

$$u \in Span(u_1, u_2, \dots, u_n) \Leftrightarrow \exists (\alpha_1, \dots, \alpha_n) \in \mathbb{K}^n$$

 $u = \alpha_1 u_1 + \dots + \alpha_n u_n$

Example 15. Let u and v be two vectors of \mathbb{R}^3 . What can you say about $\mathcal{V}ect(u, v)$? ₩ Video : ex 15

Example 16. Find two spanning families of the subspace E of \mathbb{R}^3 where E is the set of vectors u = (x, y, z) such that : x - y + z = 0.

₩ Video : ex 16

Theorem 15. Let *E* be a vector-space over \mathbb{K} and $\mathcal{F} = \{u_1, u_2, u_1, \ldots, u_j, u_n\}$ a spanning family of E. The following families are also spanning families of E:

- 1. The family get buy switching two vectors of \mathcal{F}
- 2. The family get by multipliving one vector of \mathcal{F} by a non zeo scalar.
- 3. The family get by adding to one vector of \mathcal{F} a linear combination of other vectors of \mathcal{F} .
- 4. The family get by removing in \mathcal{F} a vector which is a linear combination of other vectors of \mathcal{F} .

Example 17.

Write the previous theorem in mathematics language.

 \blacksquare Video : ex 17

Proposition 16.

If $F = \mathcal{V}ect\{u_1, u_2, ..., u_n\}$ et $G = \mathcal{V}ect\{v_1, v_2, ..., v_p\}$, then $F + G = \mathcal{V}ect\{u_1, u_2, ..., u_n, v_1, v_2, ..., v_p\}$

Example 18.

Let u_1, u_2, u_3 be three vectors in a vector space E. What is $Span(u_1, u_2) + Span(u_3)$? Video : ex 18

6.2Linearly indepedence

Definition 8.

Let $\mathcal{F} = (u_1, u_2, \dots, u_n)$ be a family of vectors in a vector space E. We say that this family is linearly independent or that the vectors u_1, u_2, \ldots, u_n are linearly independent, if and only if a linear combination of those vectors which is zero implies that all coefficients are zero.Which means :

$$\forall (\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{K}^n, \lambda_1 u_1 + \lambda_2 u_2 + \dots + \lambda_n u_n = 0 \Rightarrow$$
$$\lambda_1 = \lambda_2 = \dots = \lambda_n = 0$$

Example 19.

- 1. In the vector space \mathbb{R}^3 over \mathbb{R} , prove that the family ((1,2,0), (0,1,2)) is linearly independent.
- 2. In the vector space of polynomials with real coefficients over \mathbb{R} , prove that the family 1, X, X 1 is not linearly independent.

₩ Video : ex 19

Remark 10.

Every sub-family of a linearly independent family is linear independent.

6.3 Linearly dependence

Definition 9.

Let $\mathcal{F} = (u_1, u_2, \ldots, u_n)$ be a family of vectors in a vector space E. This family is **linearly dependent** or the vectors u_1, u_2, \ldots, u_n are **linearly dependent**, if and only if it is not linearly lyindependent. Which means : $\exists (\lambda_1, \lambda_2, \ldots, \lambda_n) \in \mathbb{K}^n$ non all zero such that $\lambda_1 u_1 + \lambda_2 u_2 + \cdots + \lambda_n u_n = 0$

Particular cases

- 1. If n = 1 then the set (u_1) is linearly dependent if $u_1 = 0$.
- 2. If n = 2 then the set (u_1, u_2) is linearly dependent if u_1 et u_2 are collinear.
- 3. If n = 3 then the set (u_1, u_2, u_3) is linearly dependent if u_1, u_2 et u_3 are coplanar.

Theorem 17.

A family $\mathcal{F} = (u_1, u_2, \dots, u_n)$ is linearly dependent if one of those vectors is a linear combination of the others

6.4 Basis

Definition 10.

A family $\mathcal{F} = (e_1, \ldots, e_n)$ of vectors in a vector space E is a basis of E if and only if this family is both a **spannig family** of E and **linearly independent**.

Definition 11.

A standard basis of a vector space E is a very simple basis. We speak about the canonical basis.

Example 20.

— In \mathbb{R}^2 , $e_1 = (0, 1)$ $e_2 = (1, 0)$ is the standard basis

— In the set of polynomials of degree less or equal than 2, $(1, X, X^2)$ is the standard basis.

Theorem 18.

Let $\mathcal{B} = (e_1, \ldots, e_n)$ be a basis of a vector space E over \mathbb{K} , u any vector of E. There exists a unique family $(x_1, \ldots, x_n) \in \mathbb{K}^n$ such that $: u = x_1 e_1 + \cdots + x_n e_n$.

Those coefficients (x_1, \ldots, x_n) are the coordinates of u in the basis $\mathcal{B} = (e_1, \ldots, e_n)$. It is unique.

Particular cases

Let $\mathcal{F} = (e_1, \ldots, e_n)$ be a basis of E.

1. If n = 1 then E is a straight line trough zero

2. If n = 2 then E is a plane trough zero.

6.5 Spanning and Linearly independant families

Theorem 19. The Exchange Lemma

Let *E* be a vector-space over *K* and let $\mathcal{G} = \{x_1, x_2, ..., x_p\}$ be a spanning vector of *E*, and $\mathcal{L} = \{y_1, y_2, ..., y_r\}$ be a linearly independent family of *E* then :

 $r\leqslant p$

there exists one way to replace r des vectors of \mathcal{G} by vectors of \mathcal{L} .

7 Finite dimension vector space

7.1 Definitions and properties

Definition 12.

Let E be a vector space over \mathbb{K} . E is of finite dimension if and only if E has a finite basis.

Theorem 20. Dimension theorem

In a non zero vector space E over \mathbb{K} of finite dimension all bases of a vector space have equally many elements. This finite number of elementsd defines the dimension of the space E and is denoted dim E.

By convention $\{0_E\}$ has for dimension zero.

Example 21.

Are those subspaces finite or not? If finite, give their dimension.

1. \mathbb{R}^2

- 2. A plane trough the origin.
- 3. The set of continuous functions on an interval.

Proposition 21. \mathbb{R}^n is a vector space of dimension *n* over \mathbb{R}

Remark 11. The dimension of a vector space depends on the \mathbb{K} on which we are working.

Theorem 22. Basis adapted to a direct sum

Let F and G be two vector subspaces of the \mathbb{K} vector space E.

We give a $\mathcal{B} = (f_1, \ldots, f_p)$ basis of F and $\mathcal{B}' = (g_1, \ldots, g_q)$ a basis of G. So :

1. $F \cap G = \{0\} \Leftrightarrow$ the set $(f_1, \ldots, f_p, g_1, \ldots, g_q)$ is linearly independent in E.

- 2. $F + G = E \Leftrightarrow \text{the set } (f_1, \ldots, f_p, g_1, \ldots, g_q) \text{ spans } E.$
- 3. $F \oplus G = E \Leftrightarrow$ the set $(f_1, \ldots, f_p, g_1, \ldots, g_q)$ is a basis of E.

Example 22.

Prove the above theorem.

Theorem 23. Incomplete basis theorem

Let E be a vector space over \mathbb{K} of ifnite dimension. Every family of vectors of E linearly independent is a sub-family of a basis of E.

We are able to add suitably choosen vectors to a linearly independent family to get a basis of E.

This means that we can gradually add vectors to a suitably chosen linearly independent set in order to construct a base of E.

7.2 Dimension and cardinality

Theorem 24.

Let E be a vector space over \mathbb{K} , of finite dimension $n \in \mathbb{N}^*$. Let $\mathcal{F} = (u_1, \ldots, u_p)$ be a family of vectors in E.

- 1. If \mathcal{F} is linearly independent then $p \leq n$.
- 2. If \mathcal{F} is a spanning family then $p \ge n$.
- 3. If \mathcal{F} is either linearly independent or a spanning family and if p = n then \mathcal{F} is a basis of E.

Example 23. Justify the above theorem.

Corollary 25.

Let F and G be two vector subspaces of the vector space E such that $F\subset G$ and $\dim F{=}\dim G$ so F=G

Example 24.

Justify the above corollary.

8 Finite dimension vector subspaces

8.1 Dimension of a vector subspace

The notions of linearly independence and spanning family are the same as we place in E or in F vector subspace of the vector space E.

Theorem 26.

Every vector subspace F of a \mathbb{K} vector space E of finite dimension is of finite dimension and we have : dim $F \leq \dim E$

Theorem 27 (Grassmann Formula).

Let E be a vector space and F and G two vector subspaces of E then

$$\dim F + G = \dim F + \dim G - \dim F \cap G$$

Example 25.

Check the formula on the following examples.

8.2 Rank of a vector set

Definition 13.

Let E be a finite dimensional vector space. The rank of a family of vectors of E is the dimension of the subspace spanned by this family. We denote it by rg.

$$\operatorname{rg}(u_1,\ldots,u_n) = \dim \mathcal{S}pan(u_1,\ldots,u_n)$$

Example 26.

Let u = (2, 3, 5), v = (4, 6, 10), et w = (-2, -3, -5). Find rg(u, v, w).

Theorem 28.

Let (u_1, \ldots, u_p) be a family of vectors in a vector space $E \mathcal{K}$.

- If dim E = n then we get : $rg(u_1, \ldots, u_p) \leq n$

 $-\operatorname{rg}(u_1,\ldots,u_p)\leqslant p$

— (u_1, \ldots, u_p) is linearly independent if and only if its rank is p.

8.3 Sub-spaces complements in finite dimension

Theorem 29.

Let E be a finite-dimensional vector space. Let F and G be two complement subspaces in E. So :

$$\dim F + \dim G = \dim E$$

Remark 12.

Be careful, the converse is false as the following counterexample shows : F = Vect((1, 1)) et F = G.

Theorem 30. Characterization theorem

Let E be a finite-dimensional vector space n.

- 1. If dim F + dim G = dim E and if $F \cap G = \{0\}$ then F and G are complements in E.
- 2. If dim F + dim G = dim E and if F + G = E then F and G are complements in E.

Exercises

TD 1-3

Exercise 1.

- 1. Let $E = \mathbb{R}^*_+ \times \mathbb{R}$. We define on E the addition by $(a, b) \oplus (c, d) = (ac, b + d)$ and the scalar law by $\lambda(a, b) = (a^{\lambda}, \lambda b)$. Show that (E, +, .) is a \mathbb{R} vector space.
- 2. On $E = \mathbb{R}^2$, we define the following operations $(a, b) \oplus (c, d) = (a + c, b + d)$ and $\lambda \odot (a, b) = (\lambda a, 0)$. Show that E with those two operations is not a \mathbb{R} vector space.
- 3. The set of the real bijective functions from \mathbb{R} in \mathbb{R} endowded with the internal law \circ and the multiplication by a scalar is a vector space on \mathbb{R} ?

Exercise 2.

Show that the set of continuous functions with the usual operation + and \cdot on an interval I $\subset \mathbb{R}$ is a vector space on \mathbb{R}

Exercise 3.

Let $E = \mathbb{R}^3$. Are the following sub-sets vector subspaces of E?

- 1. The set of triplets (x; y; z) such that x + y = 0.
- 2. The set of triplets (x; y; z) such that x = 0 ou y = 0.
- 3. The set of triplets (x; y; z) such that $x^2 + y^2 + z^2 = 10$.

Exercise 4.

We denote by E the vector space of real-valued functions functions (from \mathbb{R} to \mathbb{R}), equipped with the addition and the multiplication by a real number. Are the following subsets subspaces of E?

- 1. The set of polynomials of the second degree.
- 2. The set of functions such that f(1) = 2f(0).
- 3. The set of functions such that f(1) f(0) = 1.
- 4. The functions such that, $a \in \mathbb{R}$ being set, f(x) = f(a x) for all $x \in \mathbb{R}$.
- 5. The set of differentiable functions over an interval I.
- 6. The set of solutions of a first order linear differential equation.
- 7. The set of polynomials of degrees less than or equal to n.

Exercise 5.

Indicate without calculation the nature of the following sets :

1. $E_1 = \{(x, y) \in \mathbb{R}^2 | x - 2y = 0\}.$ 2. $E_2 = \{(3\lambda, -\lambda) | \lambda \in \mathbb{R}\}$ 3. $E_3 = \{(x, y, z) \in \mathbb{R}^3 | x - 2y = 0\}$ 4. $E_4 = \{(x, y, z) \in \mathbb{R}^3 | x - 2y = 0 \text{ and } y + z = 0\}$ 5. $E_4 = \{(x, y, z) \in \mathbb{R}^3 | x - 2y = 0 \text{ or } y + z = 0\}$ 6. $E_5 = \{(3\lambda, -\lambda, 2\lambda) | \lambda \in \mathbb{R}\}$

Exercise 6. (Optional)

Let E be a \mathbb{K} vector space and F and G two subspaces Vector of E.

Show that $F \cup G$ is a vector subspace of E if and only if $F \subset G$ or $G \subset F$.

TD 4-5

Exercise 7.

Let F and G be two vector spaces of a vector space E.

- 1. What about $a \in E$ if $F \cap G = \{a\}$.
- 2. What about F and G if $F \cup G = E$.

Exercise 8.

Let $F = f : \mathbb{R} \to \mathbb{R}, f(x) = ax + b, a \in \mathbb{R}, b \in \mathbb{R}$ and $G = f : \mathbb{R} \to \mathbb{R}, f(x) = ax^2 + bx, a \in \mathbb{R}, b \in \mathbb{R}$

- 1. Show that F and G are vector subspaces of the vector space of continuous functions.
- 2. Find $F \cap G$ and verify that $F \cap G$ is a vector space.
- 3. Find $F \cup G$. Is $F \cup G$ a vector space?
- 4. Same question with $F = f : \mathbb{R} \to \mathbb{R}, f(x) = ax + b, a \in \mathbb{R}, b \in \mathbb{R}$ and $G = f : \mathbb{R} \to \mathbb{R}, f(x) = ax^2 + bx + c, a \in \mathbb{R}, b \in \mathbb{R}$, $b \in \mathbb{R}$

Exercise 9.

Is this set (x; y; z) such that x = 0 and 2x + y = 0 a vector subspace of E?

Exercise 10.

Let $P = \{(x, y, z) \in \mathbb{R}^3 | x + y + z = 0\}$ et $D = \{(x, y, z) \in \mathbb{R}^3 | x = y = z\}$. We admit that P and D are subspaces of \mathbb{R}^3 .

- 1. Determine $P \cap D$.
- 2. Let \overrightarrow{k} a unitary vector of D and let \overrightarrow{u} be a vector of \mathbb{R}^3 .
 - (a) Check that $\overrightarrow{u} (\overrightarrow{k}, \overrightarrow{u}) \overrightarrow{k}$ is in P
 - (b) Deduce that P and D are complementary subspaces.

Exercise 11.

Let E be the set of applications of \mathbb{R} in \mathbb{R} . Consider the sets :

- $P = \{f \in E/f \text{ is an even function }\} \text{ et } I = \{f \in E/f \text{ is an odd function }\}$
- 1. Show that P and I are complementary subspaces of E
- 2. Give the decomposition in $P \oplus, I$ of the following functions $:x \mapsto e^x; x \mapsto (1+x)^6; x \mapsto \sin(x)$.

Exercise 12.

Let F and G be two vector subspaces of a vector space E.

- 1. What can we say about F and G if $\forall x \in E, \exists (a, b) \in F \times G \mid x = a + b$.
- 2. What can we say about F and G if $\exists x \in E | \exists ! (a, b) \in F \times G | x = a + b$

TD6

Exercise 13.

Let u and v be two vectors of a vector space E, compare the following sets :

 $A = \mathcal{V}ect(u, v) \ B = \mathcal{V}ect(-u, v) \ C = \mathcal{V}ect(u + 2v, v) \ D = \mathcal{V}ect(u) \ D = \mathcal{V}ect(u) + \mathcal{V}ect(v)$

Exercise 14.

Let u, v be two vectors of a vector space E, put w = u - 2v.

- 1. Is (u, v, w) linearly independent?
- 2. We suppose that u and v are non-collinear vectors. Is the family (u, v) linearly independent?
- 3. We suppose that u, v and w are not collinear two by two. Is the family (u, v, w) linearly independent?

Exercise 15.

Let E be a vector space and $\mathcal{B} = (e_1, e_2, e_3)$ a basis of E

- 1. $u = 2(e_3 e_1) + 5e_2$, determine the coordinates of v in the \mathcal{B} basis
- 2. u(2, -3, 1), v(1, 2, 3) w(-1, -9, -8). Are the vectors u, v and w linearly independent?
- 3. Same question for u(1, -1, 1), v(2, 1, 3) w(-1, 2, 4).

Exercise 16.

 $\forall u \in \mathbb{R}^2$, show that u is a linear combination of (1, 1) and (3, 1).

Exercise 17.

In \mathbb{R}^3 we consider the triplets : a = (-1; 2; 1), b = (0; 1; -1), u = (1; 0; -3)and v = (-2; 5; 1).

- 1. Determine x so that (x; 1; 2) is in $\mathcal{V}ect(a, b)$.
- 2. Show that $\mathcal{V}ect(a, b) = \mathcal{V}ect(u, v)$.

TD7-8-9

Exercise 18.

Let $\mathcal{F} = (e_1, \ldots, e_n)$ and $F = \operatorname{vect}(\mathcal{F})$.

- 1. Is \mathcal{F} a basis of F?
- 2. What necessary and sufficient condition must we have on \mathcal{F} so that \mathcal{F} is a basis of F?

Exercise 19.

Do the following sets span E? — (1,1), (3,1) with $E = \mathbb{R}^2$ — (1,0,2), (1,2,1) with $E = \mathbb{R}^3$ Are the following sets linearly independent?

- (1,1),(1,2) in \mathbb{R}^2

- (2, 3),(-6,9) in \mathbb{R}^2
- (1,3,1), (1,3,0), (0,3,1) in \mathbb{R}^3
- (1,3), (-1,-2), (0,1) in \mathbb{R}^2

Exercise 20.

Let (u, v, w) be abasis of a \mathbb{R} vector space E. Among the following sets, which ones are spanning, linearly independent or basis of E.

- 1. (u, u 2v + w, -v + w)
- 2. (u v, v w, w u)

3. (u, u - 2v + w)

Exercise 21.

- 1. In \mathbb{R}^3 give an example of a linearly independent set, wich is not spanning E
- 2. In \mathbb{R}^3 give an exemple of a non linearly independent spanning set of E.

Exercise 22.

Show that $\mathbb{R}^2 = \mathcal{V}ect$ ((0;4), (-1;2), (-1;-2)). Is the decomposition of an element of \mathbb{R}^2 unique?

Exercise 23.

Consider the vectors of \mathbb{R}^4 : u = (1, -2, 4, 1) and v = (1, 0, 0, 2).

- 1. Determine $\mathcal{V}ect(u, v)$.
- 2. Complete the set (u, v) adding two vectors of the canonical basis of \mathbb{R}^4 in order to have a basis of \mathbb{R}^4 .

Exercise 24.

Are the following vector spaces finite or infinite? Give dimension of vector spaces of finite dimension.

- 1. The subspace of \mathbb{R}^3 whose equation is 2x 3y = 0.
- 2. The solutions of an homogeneous second-order differential equation with constant coefficients.
- 3. Polynomials of degrees less than or equal to n.
- 4. The set of polynomials.

Exercise 25.

- 1. Find the dimension of \mathbb{C} considered as a \mathbb{R} vector space.
- 2. Find the dimension of $\mathbb C$ considered as a $\mathbb C$ vector space.

Exercise 26.

Let's consider the \mathbb{R} vector space $E = \mathbb{R}^3$. In each case below, find a basis and an complementary subspace of the vector subspace F such that :

- 1. $F = Vect(\overrightarrow{u}, \overrightarrow{v})$ where $\overrightarrow{u} = (1, 1, 0)$ and $\overrightarrow{v} = (2, 1, 1)$.
- 2. $F = Vect(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ where $\overrightarrow{u} = (-1, 1, 0), \overrightarrow{v} = (2, 0, 1)$ and $\overrightarrow{w} = (1, 1, 1).$
- 3. $F = \{(x, y, z) \in \mathbb{R}^3 / x 2y + 3z = 0\}$

Exercise 27.

Let F and G be two sets of \mathbb{R}^3 defined by : $F = \{(x, y, z) \in \mathbb{R}^3 | x + y + z = 0\}$ and $G = \{(\lambda, \lambda, \lambda) | \lambda \in \mathbb{R}\}$

- 1. Show that F and G are subspaces of \mathbb{R}^3 and give a basis for each one.
- 2. Show that F and G are complements.

Exercise 28.

Consider the vectors of $\mathbb{R}^4: v_1 = (2,1,3,4)$, $v_2 = (0,1,0,1), \, v_3 = (2,2,3,0)$ and $v_4 = (2,-1,3,7)$

Let E be a subspace of \mathbb{R}^4 spanned by : (v_1, v_2, v_3, v_4) .

- 1. Show that (v_1, v_2, v_3) is a basis of E and give the coordinates of v_4 in that basis.
- 2. Determine a vector v_5 so that (v_1, v_2, v_3, v_5) be a basis of \mathbb{R}^4 .
- 3. Deduce a complement F of E in \mathbb{R}^4 .

Exercise 29.

In \mathbb{R}^4 consider the following vectors $\overrightarrow{u} = (1, 0, 1, 0), \ \overrightarrow{v} = (0, 1, -1, 0), \ \overrightarrow{w} = (1, 1, 1, 1), \ \overrightarrow{x} = (0, 0, 1, 0) \text{ and } \ \overrightarrow{y} = (1, 1, 0, -1).$ Let $F = Vect(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ and $G = Vect(\overrightarrow{x}, \overrightarrow{y}).$

Give the dimensions of $F,G,F+G,F\cap G\,?$

Exercise 30.

Determine the rank of the following set :

In \mathbb{R}^4 , $F = \{v_1, v_2, v_3, v_4\}$ with $v_1 = (0, 1, 1, 1)$, $v_2 = (1, 0, 1, 1)$, $v_3 = (1, 1, 0, 1)$ and $v_4 = (1, 1, 1, 0)$

Exercise 31.

Determine, according to the value of x, the rank of the following set : $x_1 = (1, x, -1), x_2 = (x, 1, x), x_3 = (-1, x, 1)$