VECTOR SPACES

Objectives

- Understand the notion of Vector Space.
 - Subspaces.
 - Understand and find Basis.

In this chapter, we use in a generic way a set \mathbb{K} which represents either \mathbb{R} or \mathbb{C}. $E_{1} \times E_{2} \cdots \times E_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right.$ such that $\left.x_{i} \in E_{i}\right\}$.

Example 1.

Describe \mathbb{R}^{3}.

1 Vector spaces

1.1 Groups

Let E be a set equipped with a binary operation \oplus that combines any two elements of E.

Example 2.

In each case below, take two elements u and v of E, and compute $u \oplus v$.

- $E=\mathbb{R}^{2}$ and \oplus is the common addition on \mathbb{R}^{2}.
- $E=\mathbb{R}^{2}$ and $(x, y) \oplus\left(x^{\prime}, y^{\prime}\right)=\left(x+y^{\prime}, x^{\prime}+y\right)$.
- $E=\mathbb{R}^{2}$ and \oplus is the dot or scalar product.
$-E=\mathbb{R}$ and $u \oplus v=u \times v+\left(u^{2}-1\right)\left(v^{2}-1\right)$
部 Video : example
A group, denoted (E, \oplus)), is an algebraic structure consisting of a set of elements E equipped with an operation \oplus that combines any two elements to form a third element. (The operation satisfies five conditions called the group axioms, namely closure, associativity, commutatitvity, identity and invertibility.)
(A0)

$$
\forall(u, v) \in E^{2}, u \oplus v \in E
$$

closure.
(A1)

$$
\forall(u, v) \in E^{2}, u \oplus v=v \oplus u
$$

\oplus is commutative.
(A2)

$$
\forall(u, v, w) \in E^{3},(u \oplus v) \oplus w=u \oplus(v \oplus w)
$$

\oplus is associative
(A3)
iii There exists an element, such an element is unique called the identity element for \oplus , denoted by 0_{E} called the zero vector, such that

$$
\forall u \in E, 0_{E} \oplus u=u
$$

(A4) For each element of E, there exists an element, commonly denoted by $-u$ such that

$$
\forall u \in E, u \oplus(-u)=0_{E}
$$

. It is called the inverse element. Instead of writting $u+(-u)=0_{E}$ on we could write : $u-u=0_{E}$

Example 3.

In each previous example, check if (E, \oplus) is or not a commutative group :
鬲 Video : closure
鬲 Video : commutativity
Do on your own associativity and identity element.

1.2 Vector Space

Every number belonging to \mathbb{K} is called a scalar.
Let E be a set endowed with an operation denoted by \oplus and called vector addition or simply addition. The second operation, called scalar multiplication takes any scalar λ and any vector $u \in E$ and gives another vector $\lambda \odot u$.
E is endowed with two operations \oplus et \odot.
E together with those two operations \oplus and $\odot,($ denoted by $(E, \oplus, \odot))$ is a vector space over the field \mathbb{K} if (E, \oplus, \odot) checks the six following conditions :
(A00)

$$
(E, \oplus) \text { is a commutative group. }
$$

(M0)

$$
\forall \alpha \in \mathbb{K}, \forall u \in E, \alpha \odot u \in E
$$

the \odot law is said to be external. This law is called external because we multiply a scalar by an element of E.
(M1) Distributivity of scalar multiplication with respect to vector addition :

$$
\forall \alpha \in \mathbb{K}, \forall(u, v) \in E^{2}, \alpha \odot(u \oplus v)=(\alpha \odot u) \oplus(\alpha \odot v)
$$

(M2) Distributivity of scalar multiplication with respect to field addition

$$
\forall(\alpha, \beta) \in \mathbb{K}^{2}, \forall u \in E,(\alpha+\beta) \odot u=(\alpha \odot u) \oplus(\beta \odot u)
$$

(M3) Compatibility of scalar multiplication with field multiplication

$$
\forall(\alpha, \beta) \in \mathbb{K}^{2}, \forall u \in E,(\alpha \beta) \odot u=\alpha \odot(\beta \odot u)
$$

（M4）Identity element of scalar multiplication ：

$$
\forall u \in E, 1 \odot u=u
$$

Remark 1．The usual addition in \mathbb{R}^{n} is denoted + ．The usual scalar multiplication in \mathbb{R}^{n} is denoted by ．．

Example 4.

1．Prove that $\left(\mathbb{R}^{2},+,.\right)$ is a vector space．
湴 Video ：example 4）1）
2．Prove that $\left(\mathbb{R}^{2},+\odot\right)$ is not a vector space with $\lambda \in \mathbb{R}, \lambda(x, y)=(x+\lambda, y+\lambda)$ ．
をie Video ：example 4）2）
Remark 2．Please note that the vector space structure ie operations which we endow the set E ，can make it or not，a vector space，as shown in the example above．

Definition 1.

Elements of the vector space E are called vectors and elements of \mathbb{K} are called scalar．
In \mathbb{R}^{n} ，we use the notation with an arrow but we won＇t use it as vectors can be functions．

Proposition 1.

\mathbb{R}^{n} endowed with the common addition + and the common scalar multiplication \cdot is a vector space over \mathbb{R} ．

Proposition 2.

1．$\forall u \in E, 0 \odot u=0_{E}$
2．$\forall \lambda \in \mathbb{K}, \lambda \odot 0_{E}=0_{E}$
3．For all $u \in E$ and for all $\lambda \in \mathbb{K}, \lambda \odot u=0_{E} \Rightarrow \lambda=0$ ou $u=0_{E}$
4．For all $u \in E,(-1) \odot u=-u$

Example 5.

Prove the previous proposition（1，2 and 3）．
粟 Video ： 1
㝻 Video： 2
畐 Video： 3

2 Subspaces

Definition 2.

Let F be a part of a vector space $(E,+, \cdot)$ over \mathbb{K}
We say that F is a subspace of the vector space E
－F is non empty
－F endowed with the two operations + and \cdot of E is itself a vector space．
This definition is not very useful as to prove that F is a subspace we have to prove that F is itself a vector space．Let＇s introduce another interesting theorem．

Theorem 3．Let F be a subset of a vector space $(E,+, \cdot)$ over \mathbb{K}
F is a subspace of E if it checks those three conditions ：
（i） $0_{E} \in F$
（ii）$\forall(u, v) \in F^{2}, u+v \in F$ ．If we add any two vectors we end up with a vector of F
（iii）$\forall u \in F, \forall \alpha \in \mathbb{K}, \alpha \cdot u \in F$ ．If we multiply any vector by a constant we end up with a vector of F ．

Example 6．Prove this theorem．
洷 Video ：ex 6
Using this theorem，it will be easier to prove that a subset F of E is a subspace．There exists another summary version of this theorem

Theorem 4．Let F be a subset of a vector space $(E,+, \cdot)$ over \mathbb{K}
F is a subspace of E if it checks those two conditions ：
（i） $0_{E} \in F$
（ii）$\forall(u, v) \in F^{2}, \forall(\alpha) \in \mathbb{K}, \alpha \cdot u+v \in F$
This is a summary version．You choose either this theorem or the previous one．

Example 7.

Show that the plane of equation $2 x-3 y+2 z=0$ is a vector subspace of \mathbb{R}^{3} ．
垔 Video ：ex 7
On your own ：get training with exercise 3）

3 Subspaces of \mathbb{R}^{2} and \mathbb{R}^{3}

$3.1 \quad$ In \mathbb{R}^{2}

湮 Video：subspaces of \mathbb{R}^{2}

Remark 3.

\mathbb{R}^{2} can be viewed as a set of points M of coordinates (x, y) in the xy－plane (O, \vec{i}, \vec{j}) ．But in this chapter \mathbb{R}^{2} is seen as a set of vectors \vec{u} whose coordinates are (x, y) in the standard basis (\vec{i}, \vec{j}) ．

Proposition 5.

Let $\vec{u}=(a, b)$ be the direction vector of a straight line D trough the origin，in a basis (\vec{i}, \vec{j})
1．D has a cartesian equation ：$-b x+a y=0$ ．
2．$D=\{(\lambda a, \lambda b), \lambda \in \mathbb{R}\}$ ．
3．$D=\operatorname{Span}(\vec{u})$

Proposition 6．Subspaces of \mathbb{R}^{2}

Subspaces of \mathbb{R}^{2} are $\left\{0_{E}\right\}$ ，the straight lines trough the origin and \mathbb{R}^{2} ．

$3.2 \quad$ In \mathbb{R}^{3}

学 Video: subspaces of \mathbb{R}^{3}

Remark 4.

\mathbb{R}^{3} can be viewed as a set of points M of coordinates (x, y, z) in $(O, \vec{i}, \vec{j}, \vec{k})$. But in this chapter \mathbb{R}^{3} is seen as a set of vectors \vec{u} whose coordinates are (x, y, z) in th standard basis $(\vec{i}, \vec{j}, \vec{k})$.

Proposition 7. Plane through the origin

Let $\vec{u}=(a, b, c)$ and $\vec{v}=\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ be two non colinear vectors, in a basis $(\vec{i}, \vec{j}, \vec{k})$, the plane trough the origin P spanned by those two vectors

1. has a cartesian equation : $\left(b c^{\prime}-c b^{\prime}\right) x+\left(c a^{\prime}-a c^{\prime}\right) y+\left(a b^{\prime}-a^{\prime} b\right) z=0$
2. $P=\left\{\left(\lambda a+\mu a^{\prime}, \lambda b+\mu b^{\prime}, \lambda c+\mu c^{\prime}\right), \lambda \in \mathbb{R} \quad \mu \in \mathbb{R}\right\}$.
3. $P=\operatorname{Span}(\vec{u}, \vec{v})$

Proposition 8. Straight line trough the origin

Let $\vec{u}=(a, b, c)$ be the direction vector of a straight line D trough the origin, in a basis $(\vec{i}, \vec{j}, \vec{k})$

1. D has a cartesian equation : $-b x+a y=0$ and $\quad-b z+c y=0$
2. $D=\{(\lambda a, \lambda b, \lambda c), \lambda \in \mathbb{R}\}$.
3. $D=\operatorname{Span}(\vec{u})$

Proposition 9. subspaces of \mathbb{R}^{3}

Video: subspaces of \mathbb{R}^{3}
Subspaces of \mathbb{R}^{3} are $\left\{0_{E}\right\}$, vector lines, vector planes and \mathbb{R}^{3}.

Remark 5.

In \mathbb{R}^{3} two vector lines are always coplanar. Parallelism does not make sense.

Example 8.

Give the system of equations of the line of \mathbb{R}^{3} spanned by the vector $(2,-1,3)$.
至 Video : ex 8

4 Intersection of subspaces

Proposition 10.

The intersection of two subspaces F and G of a vector space E is a vector space itself.
However the union of two subspaces is not in general a vector subspace.
Generally, let $(E,+, \cdot)$ be a vector space over \mathbb{K}, let I be a non empty set and $\left(F_{i}\right)_{i \in I}$ a
familly of subspaces of E. The intersection $F=\bigcap_{i \in I} F_{i}$ is a subspace of E.

Example 9.

1. Check on your own that in \mathbb{R}^{3}, the intersection of two subspaces of a vectoriel space is a subspace.
2. Prove that the intersection of two subspaces of a vector space is a subspace ex 92)
3. Prove that the union of two subspaces of a vector space is not a subspace in general.

Video : ex 93)

5 Sum of subspaces

5．1 Defintion and properties

Definition 3.

Let E be a vector space over \mathbb{K} ，let F and G be two subspaces of E ．We can perform sum operation，denoted by $F+G$ ，this is the set of vectors which are the sum of a vector of F and a vector of G ：

$$
F+G=\{u \in E / u=f+g, f \in F, g \in G\}
$$

Remark 6．Every element of $F+G$ is a sum of an element of F and an element of G ，which means $u \in F+G \Leftrightarrow \exists f \in F, \exists g \in G$ tels que $u=f+g$ ．This way of writting is not unique generally．

Example 10.

Let D and D^{\prime} be two straight lines trough the origin of \mathbb{R}^{3} ．Find $D+D^{\prime}$ ．
畐 Video ：ex 10

Theorem 11.

The sum of two sub vector spaces of a vector space E is a subspace of E ．

Example 11.

Prove this theorem．
至 Video ：ex 11

Remark 7.

Be careful not to be confused with ths sum notation + and avoid mistakes ：
1．$F+F=F$
2．By setting $-F=\{-x, x \in F\}$ ，we get $-F=F$
3．If $F \subset G, F+G=G+G$ even though $F \neq G$

5．2 Direct sum

Definition 4.

et E be a vector space over \mathbb{K}, F and G two subspaces of E ．The sum $F+G$ is direct if every vector of $F+G$ has a unique expression as a sum of an element of F and an element of G ．

If the sum between F and G is dierct，we use this notation $F+G=F \oplus G$

Theorem 12.

Let E be a vector space over \mathbb{K}, F and G two subspaces of E ．
Then ：$F+G$ is direct $\Leftrightarrow F \cap G=\left\{0_{E}\right\}$

Example 12.

Prove this theorem．
湢 Video ：ex 12 part 1
＊Video ：ex 12 part 2

Example 13.

For the following straight lines and planes trough the origin find $F+G$ and precise if the sum is direct or not．

5.3 Complementary subspaces

Definition 5.

Let E be a vector-space over \mathbb{K}, F and G two subspaces of $E . F$ et G dare called complementary subspaces in E if $F+G$ is direct and equal to E. Thus F and G are complements in $E \Leftrightarrow E=$ $F \oplus G$.

We say that G is a complement of F.
Two subspaces F and G of a vector space over \mathbb{K} are complementary subspaces in E if and only if

$$
F \cap G=\left\{0_{E}\right\} \quad F+G=E
$$

Theorem 13.

Every vector subspace of E has a complement.

Remark 8.

1. A subspace F of E may have several complements. Let $\mathbb{K}=\mathbb{R}$ and $E=\mathbb{R}^{2}$, the subspace $F=\mathbb{R} \times\{0\}$ de E has infinitely many complementary subspaces in E, of the shape $\mathbb{R} x$ with $x \in E-F: F=\operatorname{Vect}((1,0))$ then $D=\operatorname{Vect}(2,1)$ is a complement of F in R^{2} and so is $D^{\prime}=\operatorname{Vect}(1,0)$
2. In finite dimension, all subspace has at least one complementary subspace.
3. The existence of a complementary subspace in a vector space is equivalent to the axiom of choice

Theorem 14.

Let F and G be two subspaces of a vector space E. Then F and G are complements in E if and only if all vector $u \in E$ has a unique expression $u=f+g f \in F$ and $g \in G$. Every element of $F+G$ has a unique expression as an element of F and an element of G.

Remark 9. Be careful, two subspaces may be complementary subspaces in a vector space but not in another one. For instance two straight lines trough the origin of \mathbb{R}^{3} are complements in the half plane they span but not in the whole space \mathbb{R}^{3}, as even their sum is direct in \mathbb{R}^{3} their direct sum is not \mathbb{R}^{3}.

Example 14. Let's consider $E=\mathbb{R}^{3}$. Prove that $F=\left\{(x, y, z) \in \mathbb{R}^{3} / x-y+z=0\right\}$ and $G=\left\{(x, x, x) \in \mathbb{R}^{3}\right\}$ are complements in E.

要 Video : ex 14 part 1
㝻 Video : ex 14 part 2

6 Finite vector families

6.1 Spanning family

Definition 6.

Let E be a vector space and u_{1}, \ldots, u_{n}, n vectors of E.
A vector u de E is a linear combination of u_{1}, \ldots, u_{n}, if there exists n scalars $\alpha_{1}, \ldots, \alpha_{n}$ of \mathbb{K} such that

$$
u=\alpha_{1} u_{1}+\cdots+\alpha_{n} u_{n}
$$

Definition 7.

Let E be a vector space over $\mathbb{K} l$ ．The set of vectors u_{1}, \ldots, u_{n} is a spanning family of E if E is the set of all linear combinations of $u_{1}, u_{2}, \ldots, u_{n} . E$ is called the vector space spanned by u_{1}, \ldots, u_{n} ，and we denote it $E=\operatorname{Span}\left(u_{1}, \ldots, u_{n}\right)$ ．

$$
\begin{gathered}
u \in \operatorname{Span}\left(u_{1}, u_{2}, \ldots, u_{n}\right) \Leftrightarrow \exists\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{K}^{n} \\
u=\alpha_{1} u_{1}+\cdots+\alpha_{n} u_{n}
\end{gathered}
$$

Example 15．Let u and v be two vectors of \mathbb{R}^{3} ．What can you say about $\mathcal{V} \operatorname{ect}(u, v)$ ？
急 Video ：ex 15
Example 16．Find two spanning families of the subspace E of \mathbb{R}^{3} where E is the set of vectors $u=(x, y, z)$ such that ：$x-y+z=0$ ．

畾 Video ：ex 16
Theorem 15．Let E be a vector－space over \mathbb{K} and $\mathcal{F}=\left\{u_{1}, u_{2}, u_{i} \ldots, u_{j}, u_{n}\right\}$ a spanning family of E ．The following families are also spanning families of E ：

1．The family get buy switching two vectors of \mathcal{F}
2．The family get by multipliying one vector of \mathcal{F} by a non zeo scalar．
3．The family get by adding to one vector of \mathcal{F} a linear combination of other vectors of \mathcal{F} ．
4．The family get by removing in \mathcal{F} a vector which is a a linear combination of other vectors of \mathcal{F} ．

Example 17.

Write the previous theorem in mathematics language．
部 Video ：ex 17

Proposition 16.

If $F=\mathcal{V} \operatorname{ect}\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ et $G=\mathcal{V} \operatorname{ect}\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ ，then $F+G=\mathcal{V} \operatorname{ect}\left\{u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{p}\right\}$

Example 18.

Let u_{1}, u_{2}, u_{3} be three vectors in a vector space E ．What is $\operatorname{Span}\left(u_{1}, u_{2}\right)+\mathcal{S}$ pan $\left(u_{3}\right)$ ？
密Video ：ex 18

6．2 Linearly indepedence

Definition 8.

Let $\mathcal{F}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ be a family of vectors in a vector space E ．We say that this family is linearly independent or that the vectors $u_{1}, u_{2}, \ldots, u_{n}$ are linearly independent，if and only if a linear combination of those vectors which is zero implies that all coefficients are zero．Which means ：

$$
\begin{gathered}
\forall\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathbb{K}^{n}, \lambda_{1} u_{1}+\lambda_{2} u_{2}+\cdots+\lambda_{n} u_{n}=0 \Rightarrow \\
\lambda_{1}=\lambda_{2}=\cdots=\lambda_{n}=0
\end{gathered}
$$

Example 19.

1 . In the vector space \mathbb{R}^{3} over \mathbb{R}, prove that the family $((1,2,0),(0,1,2))$ is linearly independent.
2. In the vector space of polynomials with real coefficients over \mathbb{R}, prove that the family $1, X, X-1$ is not linearly independent.
畾 Video : ex 19

Remark 10.

Every sub-family of a linearly independent family is linear independent.

6.3 Linearly dependence

Definition 9.

Let $\mathcal{F}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ be a family of vectors in a vector space E. This family is linearly dependent or the vectors $u_{1}, u_{2}, \ldots, u_{n}$ are linearly dependent,if and only if it is not linearlyindependent. Which means : $\exists\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathbb{K}^{n}$ non all zero such that $\lambda_{1} u_{1}+\lambda_{2} u_{2}+\cdots+$ $\lambda_{n} u_{n}=0$

Particular cases

1. If $n=1$ then the set $\left(u_{1}\right)$ is linearly dependent if $u_{1}=0$.
2. If $n=2$ then the set $\left(u_{1}, u_{2}\right)$ is linearly dependent iif u_{1} et u_{2} are collinear.

3 . If $n=3$ then the set $\left(u_{1}, u_{2}, u_{3}\right)$ is linearly dependent iif u_{1}, u_{2} et u_{3} are coplanar.

Theorem 17.

A family $\mathcal{F}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ is linearly dependent if one of those vectors is a linear combination of the others

6.4 Basis

Definition 10.

A family $\mathcal{F}=\left(e_{1}, \ldots, e_{n}\right)$ of vectors in a vector space E is a basis of E if and only if this family is both a spannig family of E and linearly independent.

Definition 11.

A standard basis of a vector space E is a very simple basis. We speak about the canonical basis.

Example 20.

- In $\mathbb{R}^{2}, e_{1}=(0,1) \quad e_{2}=(1,0)$ is the standard basis
- In the set of polynomials of degree less or equal than $2,\left(1, X, X^{2}\right)$ is the standard basis.

Theorem 18.

Let $\mathcal{B}=\left(e_{1}, \ldots, e_{n}\right)$ be a basis of a vector space E over \mathbb{K}, u any vector of E. There exists a unique family $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{K}^{n}$ such that : $u=x_{1} e_{1}+\cdots+x_{n} e_{n}$.

Those coefficients $\left(x_{1}, \ldots, x_{n}\right)$ are the coordinates of u in the basis $\mathcal{B}=\left(e_{1}, \ldots, e_{n}\right)$. It is unique.

Particular cases

Let $\mathcal{F}=\left(e_{1}, \ldots, e_{n}\right)$ be a basis of E.

1. If $n=1$ then E is a straight line trough zero
2. If $n=2$ then E is a plane trough zero.

Institu national
DES SCIENCES
APPLOUUEES
CENTRE VAL DE LOIRE

6.5 Spanning and Linearly independant families

Theorem 19. The Exchange Lemma
Let E be a vector-space over K and let $\mathcal{G}=\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}$ be a spanning vector of E, and $\mathcal{L}=\left\{y_{1}, y_{2}, \ldots, y_{r}\right\}$ be a linearly independent family of E then :

$$
r \leqslant p
$$

there exists one way to replace r des vectors of \mathcal{G} by vectors of \mathcal{L}.

$7 \quad$ Finite dimension vector space

7.1 Definitions and properties

Definition 12.

Let E be a vector space over \mathbb{K}. E is of finite dimension if and only if E has a finite basis.

Theorem 20. Dimension theorem

In a non zero vector space E over \mathbb{K} of finite dimension all bases of a vector space have equally many elements. This finite number of elementsd defines the dimension of the space E and is denoted $\operatorname{dim} E$.

By convention $\left\{0_{E}\right\}$ has for dimension zero.

Example 21.

Are those subspaces finite or not? If finite, give their dimension.

1. \mathbb{R}^{2}
2. A plane trough the origin.
3. The set of continuous functions on an interval.

Proposition 21. \mathbb{R}^{n} is a vector space of dimension n over \mathbb{R}
Remark 11. The dimension of a vector space depends on the \mathbb{K} on which we are working.

Theorem 22. Basis adapted to a direct sum

Let F and G be two vector subspaces of the \mathbb{K} vector space E.
We give a $\mathcal{B}=\left(f_{1}, \ldots, f_{p}\right)$ basis of F and $\mathcal{B}^{\prime}=\left(g_{1}, \ldots, g_{q}\right)$ a basis of G. So :

1. $F \cap G=\{0\} \Leftrightarrow$ the set $\left(f_{1}, \ldots, f_{p}, g_{1}, \ldots, g_{q}\right)$ is linearly independant in E.
2. $F+G=E \Leftrightarrow$ the set $\left(f_{1}, \ldots, f_{p}, g_{1}, \ldots, g_{q}\right)$ spans E.
3. $F \oplus G=E \Leftrightarrow$ the set $\left(f_{1}, \ldots, f_{p}, g_{1}, \ldots, g_{q}\right)$ is a basis of E.

Example 22.

Prove the above theorem.

Theorem 23. Incomplete basis theorem

Let E be a vector space over \mathbb{K} of ifnite dimension. Every family of vectors of E linearly independent is a sub-family of a basis of E.

We are able to add suitably choosen vectors to a linearly independent family to get a basis of E.

This means that we can gradually add vectors to a suitably chosen linearly independant set in order to construct a base of E.

7.2 Dimension and cardinality

Theorem 24.

Let E be a vector space over \mathbb{K}, of finite dimension $n \in \mathbb{N}^{*}$. Let $\mathcal{F}=\left(u_{1}, \ldots, u_{p}\right)$ be a family of vectors in E.

1. If \mathcal{F} is linearly independent then $p \leqslant n$.
2. If \mathcal{F} is a spanning family then $p \geqslant n$.
3. If \mathcal{F} is either linearly independent or a spanning family and if $p=n$ then \mathcal{F} is a basis of E.

Example 23. Justify the above theorem.

Corollary 25.

Let F and G be two vector subspaces of the vector space E such that $F \subset G$ and dim $F=\operatorname{dim} G$ so $F=G$

Example 24.

Justify the above corollary.

8 Finite dimension vector subspaces

8.1 Dimension of a vector subspace

The notions of linearly independence and spanning family are the same as we place in E or in F vector subspace of the vector space E.

Theorem 26.

Every vector subspace F of a \mathbb{K} vector space E of finite dimension is of finite dimension and we have : $\operatorname{dim} F \leqslant \operatorname{dim} E$

Theorem 27 (Grassmann Formula).

Let E be a vector space and F and G two vector subspaces of E then

$$
\operatorname{dim} F+G=\operatorname{dim} F+\operatorname{dim} G-\operatorname{dim} F \cap G
$$

Example 25.

Check the formula on the following examples.

8.2 Rank of a vector set

Definition 13.

Let E be a finite dimensional vector space. The rank of a family of vectors of E is the dimension of the subspace spanned by this family. We denote it by rg.

$$
\operatorname{rg}\left(u_{1}, \ldots, u_{n}\right)=\operatorname{dim} \operatorname{Span}\left(u_{1}, \ldots, u_{n}\right)
$$

Example 26.

Let $u=(2,3,5), v=(4,6,10)$, et $w=(-2,-3,-5)$. Find $\operatorname{rg}(u, v, w)$.

Theorem 28.

Let $\left(u_{1}, \ldots, u_{p}\right)$ be a family of vectors in a vector space $E \mathcal{K}$.

- If $\operatorname{dim} E=n$ then we get $: \operatorname{rg}\left(u_{1}, \ldots, u_{p}\right) \leqslant n$
- $\operatorname{rg}\left(u_{1}, \ldots, u_{p}\right) \leqslant p$
- $\left(u_{1}, \ldots, u_{p}\right)$ is linearly independent if and only if its rank is p.

8.3 Sub-spaces complements in finite dimension

Theorem 29.

Let E be a finite-dimensional vector space. Let F and G be two complement subspaces in E. So :

$$
\operatorname{dim} F+\operatorname{dim} G=\operatorname{dim} E
$$

Remark 12.

Be careful, the converse is false as the following counterexample shows : $F=\operatorname{Vect}((1,1))$ et $F=G$.

Theorem 30. Characterization theorem

Let E be a finite-dimensional vector space n.

1. If $\operatorname{dim} F+\operatorname{dim} G=\operatorname{dim} E$ and if $F \cap G=\{0\}$ then F and G are complements in E.
2. If $\operatorname{dim} F+\operatorname{dim} G=\operatorname{dim} E$ and if $F+G=E$ then F and G are complements in E.

Exercises

TD 1-3

Exercise 1.

1. Let $E=\mathbb{R}_{+}^{*} \times \mathbb{R}$. We define on E the addition by $(a, b) \oplus(c, d)=(a c, b+d)$ and the scalar law by $\lambda(a, b)=\left(a^{\lambda}, \lambda b\right)$. Show that $(E,+,$.$) is a \mathbb{R}$ vector space.
2. On $E=\mathbb{R}^{2}$, we define the following operations $(a, b) \oplus(c, d)=(a+c, b+d)$ and $\lambda \odot(a, b)=(\lambda a, 0)$. Show that E with those two operations is not a \mathbb{R} vector space.
3. The set of the real bijective functions from \mathbb{R} in \mathbb{R} endowded with the internal law \circ and the multiplication by a scalar is a vector space on \mathbb{R} ?

Exercise 2.

Show that the set of continuous functions with the usual operation + and \cdot on an interval I $\subset \mathbb{R}$ is a vector space on \mathbb{R}

Exercise 3.

Let $E=\mathbb{R}^{3}$. Are the following sub-sets vector subspaces of E ?

1. The set of triplets $(x ; y ; z)$ such that $x+y=0$.
2. The set of triplets $(x ; y ; z)$ such that $x=0$ ou $y=0$.
3. The set of triplets $(x ; y ; z)$ such that $x^{2}+y^{2}+z^{2}=10$.

Exercise 4.

We denote by E the vector space of real-valued functions functions (from \mathbb{R} to \mathbb{R}), equipped with the addition and the multiplication by a real number. Are the following subsets subspaces of E ?

1. The set of polynomials of the second degree.
2. The set of functions such that $f(1)=2 f(0)$.
3. The set of functions such that $f(1)-f(0)=1$.
4. The functions such that, $a \in \mathbb{R}$ being set, $f(x)=f(a-x)$ for all $x \in \mathbb{R}$.
5. The set of differentiable functions over an interval I.
6. The set of solutions of a first order linear differential equation.
7. The set of polynomials of degrees less than or equal to n.

Exercise 5.

Indicate without calculation the nature of the following sets :

1. $E_{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid x-2 y=0\right\}$.
2. $E_{2}=\{(3 \lambda,-\lambda) \mid \lambda \in \mathbb{R}\}$
3. $E_{3}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x-2 y=0\right\}$
4. $E_{4}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x-2 y=0\right.$ and $\left.y+z=0\right\}$
5. $E_{4}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x-2 y=0\right.$ or $\left.y+z=0\right\}$
6. $E_{5}=\{(3 \lambda,-\lambda, 2 \lambda) \mid \lambda \in \mathbb{R}\}$

Exercise 6. (Optional)
Let E be a \mathbb{K} vector space and F and G two subspaces Vector of E.
Show that $F \cup G$ is a vector subspace of E if and only if $F \subset G$ or $G \subset F$.

TD 4-5

Exercise 7.

Let F and G be two vector spaces of a vector space E.

1. What about $a \in E$ if $F \cap G=\{a\}$.
2. What about F and G if $F \cup G=E$.

Exercise 8.

Let $F=f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=a x+b, a \in \mathbb{R}, b \in \mathbb{R}$ and
$G=f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=a x^{2}+b x, a \in \mathbb{R}, b \in \mathbb{R}$

1. Show that F and G are vector subspaces of the vector space of continuous functions.
2. Find $F \cap G$ and verify that $F \cap G$ is a vector space.
3. Find $F \cup G$. Is $F \cup G$ a vector space?
4. Same question with $F=f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=a x+b, a \in \mathbb{R}, b \in \mathbb{R}$ and $G=f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=a x^{2}+b x+c, a \in \mathbb{R}, b \in \mathbb{R}, b \in \mathbb{R}$

Exercise 9.

Is this set $(x ; y ; z)$ such that $x=0$ and $2 x+y=0$ a vector subspace of E ?

Exercise 10.

Let $P=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y+z=0\right\}$ et $D=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x=y=z\right\}$. We admit that P and D are subspaces of \mathbb{R}^{3}.

1. Determine $P \cap D$.
2. Let \vec{k} a unitary vector of D and let \vec{u} be a vector of \mathbb{R}^{3}.
(a) Check that $\vec{u}-(\vec{k} \cdot \vec{u}) \vec{k}$ is in P
(b) Deduce that P and D are complementary subspaces.

Exercise 11.

Let E be the set of applications of \mathbb{R} in \mathbb{R}. Consider the sets : $P=\{f \in E / f$ is an even function $\}$ et $I=\{f \in E / f$ is an odd function $\}$

1. Show that P and I are complementary subspaces of E
2. Give the decomposition in $P \oplus, I$ of the following functions $: x \mapsto e^{x} ; x \mapsto(1+x)^{6}$; $x \mapsto \sin (x)$.

Exercise 12.

Let F and G be two vector subspaces of a vector space E.

1. What can we say about F and G if $\forall x \in E, \exists(a, b) \in F \times G \mid x=a+b$.
2. What can we say about F and G if $\exists x \in E|\exists!(a, b) \in F \times G| x=a+b$

TD6

Exercise 13.

Let u and v be two vectors of a vector space E, compare the following sets :

$$
A=\mathcal{V} e c t(u, v) B=\mathcal{V} e c t(-u, v) C=\mathcal{V} e c t(u+2 v, v) D=\mathcal{V} \operatorname{ect}(u) D=\mathcal{V} \operatorname{ect}(u)+\mathcal{V} \operatorname{ect}(v)
$$

Exercise 14.

Let u, v be two vectors of a vector space E, put $w=u-2 v$.

1. Is (u, v, w) linearly independant?
2. We suppose that u and v are non-collinear vectors. Is the family (u, v) linearly independant?
3. We suppose that u, v and w are not collinear two by two. Is the family (u, v, w) linearly independant?

Exercise 15.

Let E be a vector space and $\mathcal{B}=\left(e_{1}, e_{2}, e_{3}\right)$ a basis of E

1. $u=2\left(e_{3}-e_{1}\right)+5 e_{2}$, determine the coordinates of v in the \mathcal{B} basis
2. $u(2,-3,1), v(1,2,3) w(-1,-9,-8)$. Are the vectors u, v and w linearly independant?
3. Same question for $u(1,-1,1), v(2,1,3) w(-1,2,4)$.

Exercise 16.

$\forall u \in \mathbb{R}^{2}$, show that u is a linear combination of $(1,1)$ and $(3,1)$.

Exercise 17.

In \mathbb{R}^{3} we consider the triplets : $a=(-1 ; 2 ; 1), b=(0 ; 1 ;-1), u=(1 ; 0 ;-3)$
and $v=(-2 ; 5 ; 1)$.

1. Determine x so that $(x ; 1 ; 2)$ is in $\mathcal{V e c t}(a, b)$.
2. Show that $\mathcal{V e c t}(a, b)=\mathcal{V e c t}(u, v)$.

TD7-8-9

Exercise 18.

Let $\mathcal{F}=\left(e_{1}, \ldots, e_{n}\right)$ and $F=\operatorname{vect}(\mathcal{F})$.

1. Is \mathcal{F} a basis of F ?
2. What necessary and sufficient condition must we have on \mathcal{F} so that \mathcal{F} is a basis of F ?

Exercise 19.

Do the following sets span E ?

- $(1,1),(3,1)$ with $E=\mathbb{R}^{2}$
- $(1,0,2),(1,2,1)$ with $E=\mathbb{R}^{3}$

Are the following sets linearly independant?

- $(1,1),(1,2)$ in \mathbb{R}^{2}
- $(2,3),(-6,9)$ in \mathbb{R}^{2}
- $(1,3,1),(1,3,0),(0,3,1)$ in \mathbb{R}^{3}
- $(1,3),(-1,-2),(0,1)$ in \mathbb{R}^{2}

Exercise 20.

Let (u, v, w) ba abasis of a \mathbb{R} vector space E. Among the following sets, which ones are spanning, linearly independant or basis of E.

1. $(u, u-2 v+w,-v+w)$
2. $(u-v, v-w, w-u)$
3. $(u, u-2 v+w)$

Exercise 21.

1. In \mathbb{R}^{3} give an example of a linearly independant set, wich is not spanning E
2. In \mathbb{R}^{3} give an exemple of a non linearly independant spanning set of E.

Exercise 22.

Show that $\mathbb{R}^{2}=\mathcal{V e c t}((0 ; 4),(-1 ; 2),(-1 ;-2))$.
Is the decomposition of an element of \mathbb{R}^{2} unique?

Exercise 23.

Consider the vectors of $\mathbb{R}^{4}: u=(1,-2,4,1)$ and $v=(1,0,0,2)$.

1. Determine \mathcal{V} ect (u, v).
2. Complete the set (u, v) adding two vectors of the canonical basis of \mathbb{R}^{4} in order to have a basis of \mathbb{R}^{4}.

Exercise 24.

Are the following vector spaces finite or infinite? Give dimension of vector spaces of finite dimension.

1. The subspace of \mathbb{R}^{3} whose equation is $2 x-3 y=0$.
2. The solutions of an homogeneous second-order differential equation with constant coefficients.
3. Polynomials of degrees less than or equal to n.
4. The set of polynomials.

Exercise 25.

1. Find the dimension of \mathbb{C} considered as a \mathbb{R} vector space.
2. Find the dimension of \mathbb{C} considered as a \mathbb{C} vector space.

Exercise 26.

Let's consider the \mathbb{R} vector space $E=\mathbb{R}^{3}$. In each case below, find a basis and an complementary subspace of the vector subspace F such that :

1. $F=\operatorname{Vect}(\vec{u}, \vec{v})$ where $\vec{u}=(1,1,0)$ and $\vec{v}=(2,1,1)$.
2. $F=\operatorname{Vect}(\vec{u}, \vec{v}, \vec{w})$ where $\vec{u}=(-1,1,0), \vec{v}=(2,0,1)$ and $\vec{w}=(1,1,1)$.
3. $F=\left\{(x, y, z) \in \mathbb{R}^{3} / x-2 y+3 z=0\right\}$

Exercise 27.

Let F and G be two sets of \mathbb{R}^{3} defined by : $F=\left\{(x, y, z) \in \mathbb{R}^{3} / x+y+z=0\right\}$ and $G=$ $\{(\lambda, \lambda, \lambda) / \lambda \in \mathbb{R}\}$

1. Show that F and G are subspaces of \mathbb{R}^{3} and give a basis for each one.
2. Show that F and G are complements.

Exercise 28.

Consider the vectors of $\mathbb{R}^{4}: v_{1}=(2,1,3,4), v_{2}=(0,1,0,1), v_{3}=(2,2,3,0)$ and $v_{4}=(2,-1,3,7)$

Let E be a subspace of \mathbb{R}^{4} spanned by : $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$.

1. Show that $\left(v_{1}, v_{2}, v_{3}\right)$ is a basis of E and give the coordinates of v_{4} in that basis.
2. Determine a vector v_{5} so that $\left(v_{1}, v_{2}, v_{3}, v_{5}\right)$ be a basis of \mathbb{R}^{4}.
3. Deduce a complement F of E in \mathbb{R}^{4}.

Exercise 29.

In \mathbb{R}^{4} consider the following vectors $\vec{u}=(1,0,1,0), \vec{v}=(0,1,-1,0)$,
$\vec{w}=(1,1,1,1), \vec{x}=(0,0,1,0)$ and $\vec{y}=(1,1,0,-1)$. Let $F=\operatorname{Vect}(\vec{u}, \vec{v}, \vec{w})$ and $G=\operatorname{Vect}(\vec{x}, \vec{y})$.

Give the dimensions of $F, G, F+G, F \cap G$?

Exercise 30.

Determine the rank of the following set :
In $\mathbb{R}^{4}, F=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ with $v_{1}=(0,1,1,1), v_{2}=(1,0,1,1), v_{3}=(1,1,0,1)$ and $v_{4}=(1,1,1,0)$

Exercise 31.

Determine, according to the value of x, the rank of the following set :
$x_{1}=(1, x,-1), x_{2}=(x, 1, x), x_{3}=(-1, x, 1)$

