

DISPERSION ATMOSPHERIQUE

Isabelle Sochet

Option Risques Accidents Industriels Option Risques Environnementaux

Plan du cours

- Sources de pollution atmosphérique
- Contexte réglementaire
- Conditions de rejets
- Turbulence mécanique
- Turbulence thermique
- Classes de stabilité
- Modélisation : principes généraux
- Modèle Gaussien
- Modèle Intégral
- Modèle CFD

Sources de pollution atmosphérique

Principales sources de pollution atmosphérique (1/4)

- Emissions naturelles
- Emissions d'origine agricole
- Emissions industrielles
- Emissions domestiques
- Emissions dues aux transports
- Emissions dues aux traitements des déchets

Principales sources de pollution atmosphérique (2/4)

Emissions naturelles

- ▶ SO₂, NO₂
- Eruptions volcaniques, décompositions organiques, feux de forêt, océans., transport de poussières en provenance des déserts ou érosion éolienne des sols
- Sources naturelles de pollution les végétaux, dont le cycle de vie produit de nombreux composés toxiques (H2S, CH4, COV) ou allergisants tel que le pollen.
- Radon, gaz radioactif issu de la chaîne de désintégration radioactive de l'uranium présent dans certains sols et roches, représente également une forte source de pollution à l'intérieur des habitations

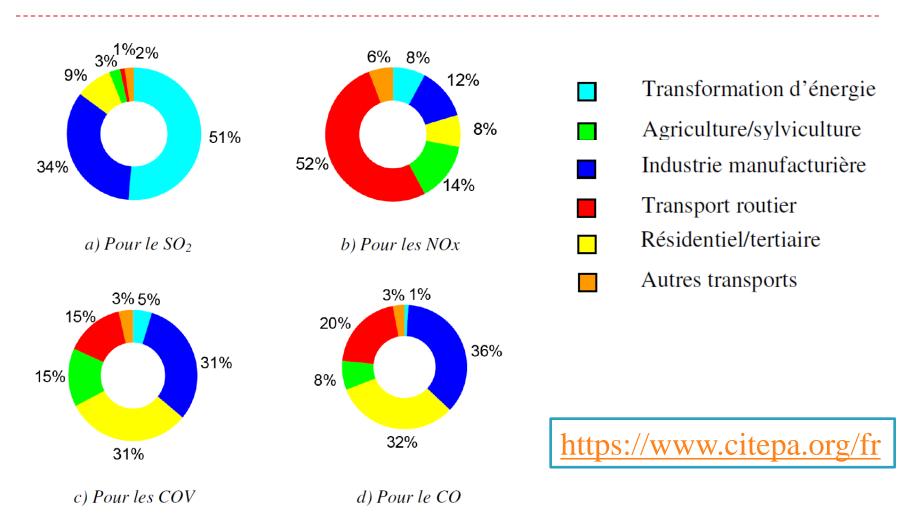
Principales sources de pollution atmosphérique (3/4)

Emissions d'origine agricole

- Ammoniac NH₃, méthane CH₄, protoxyde d'azote N₂O, monoxyde de carbone CO et pesticides
- Décomposition des matières organiques, aux animaux d'élevage et à l'utilisation massive d'engrais et de pesticides

Emissions industrielles

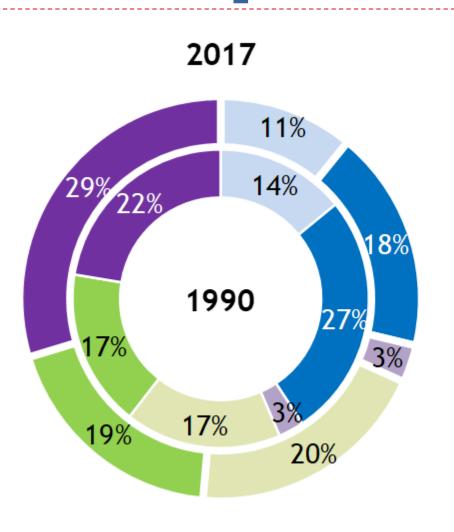
- Monoxyde de carbone CO et dioxyde de carbone CO₂, dioxyde de soufre SO₂, oxyde d'azote NO, poussières, composés organiques volatiles COV ...
- Secteurs avec rejets les plus importants :
 - production d'énergie (centrales thermiques),
 - les industries chimique, pétrolière et métallurgique,
 - les incinérateurs d'ordures ménagères.


Principales sources de pollution atmosphérique (4/4)

Emissions domestiques

▶ Dioxyde de carbone CO₂, monoxyde de carbone CO, dioxyde de soufre SO₂, oxyde d'azote NOx, poussières, métaux lourds ...

Emissions dues au traitement des déchets


- Méthane CH4, acide chlorhydrique HCl, les métaux lourds, les dioxines et les furanes C₄H₄O
- Incinération de déchets ménagers et industriels

Pourcentage d'émissions des principaux polluants par secteur CITEPA, 2010

8

Répartition des émissions de GES par secteur émetteur

https://www.citepa.org/fr

Transformation énergie

Industrie manufacturière

Traitement centralisé des déchets

Résidentiel/tertiaire

Agriculture/sylviculture

Transports

Polluants réglementés (1/2)

12 polluants réglementés :

- 1. dioxyde de soufre (SO2);
- dioxyde d'azote (NO2);
- 3. ozone (O3);
- 4. particules (PM10 et PM2,5);
- monoxyde de carbone (CO) ;
- 6. benzène (C6H6);
- 7. plomb (Pb),
- 8. arsenic (As),
- 9. cadmium (Cd),
- 10. nickel (Ni),
- 11. hydrocarbures aromatiques polycycliques (HAP),
- 12. principalement le benzo[a]pyrène (B[a]P).

Polluants réglementés (2/2)

2018 : 5 polluants en dépassement

Schéma 1 : synthèse des dépassements des normes réglementaires de concentrations pour la protection de la santé à long terme

	Principales sources primaires d'émissions au niveau national	Respect de la réglementation en 2018	Nombre d'agglomérations en dépassement en 2018
SO ₂	<u>A</u> M	⊘	0
NO ₂	₽	8	11
O ₃		8	40
PM ₁₀		8	3
PM _{2,5}		Ø	0
со		⊘	0
C₅H₅		8	1
As		Ø	0
Cd	<u>#</u>	Ø	0
Ni	<u>A</u> TH	8	1
Pb	ATT ==	⊘	0
B[a]P		Ø	0

Contexte réglementaire

Contexte réglementaire

Arrêté du 29 septembre 2005

relatif à l'évaluation de la probabilité d'occurrence, de la cinétique, de l'intensité des effets et de la gravité des conséquences des accidents potentiels dans les études de dangers des installations classées soumises à autorisation.

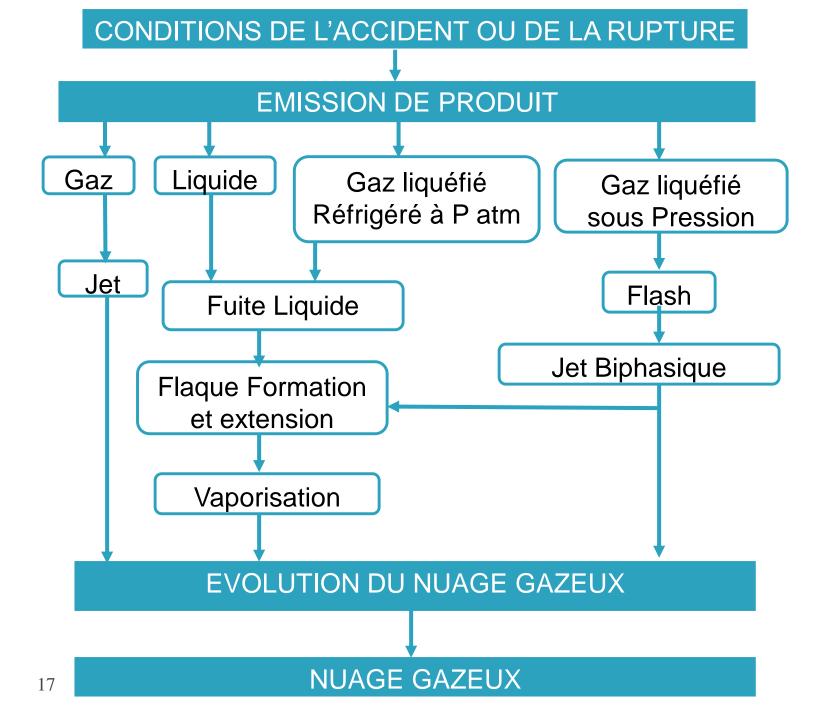
Différents seuils d'effets toxiques

SELS: Seuils d'effets létaux significatifs

Seuil de concentration au dessus duquel on peut observer une mortalité de 5% pour une durée d'exposition donnée.

SEL: Seuils d'effets létaux

Seuil de concentration au dessus duquel on peut observer une mortalité de 1% pour une durée d'exposition donnée.


SEI: Seuils d'effets irréversibles

Seuil de concentration au dessus duquel on peut observer des dangers significatifs pour la vie humaine pour une durée d'exposition fixée.

SER: Seuils d'effets réversibles

Seuil de concentration à partir duquel les premiers effets sont constatés sur une population pour une durée d'exposition fixée.

Conditions de rejets

Conditions de l'accident ou de la rupture

- Rupture ou défaillance d'un joint, défaillance d'une garniture
- Blocage en position ouverte d'un robinet de purge ou d'évent
- Eclatement d'un disque de rupture
- Ouverture d'une soupape
- Rupture par agression physique (projectile, engin ...)
- Rupture par pertes de propriétés mécaniques (corrosion, fatigue, fragilisation par effet thermique ...)
- Rupture en raison de propriétés mécaniques insuffisantes (défaut de soudure, métal non conforme ..)

Emission du produit

Perte de confinement continue

Emission de produit avec un débit ± variable pendant le temps nécessaire à la détection et à la mise en œuvre des moyens d'intervention susceptibles de réduire ou annuler le débit

durée variable = f (moyens prévention ; accessibilité)

Exemples: Fuite sur une paroi de réservoir; Rupture totale d'une canalisation courte; Fuite à partir d'une canalisation longue

Perte de confinement instantanée

Libération très rapide d'une quantité importante ou de la totalité du produit contenu

Exemple : éclatement du réservoir

Dispersion atmosphérique

Dispersion atmosphérique

C'est le transport et la diffusion d'une quantité de substance dans l'air

Transport

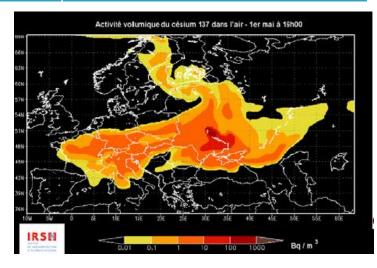
par le vent, selon densité du nuage, vitesse initiale du rejet

Diffusion:

- par la turbulence atmosphérique (frottements à la surface, gradient thermique)
- par la turbulence générée par les obstacles

Echelles de dispersion atmosphérique

Micro < 1 km Sec - min Locale 100 m – 50 km Min - heures Méso (région ale) ~10 – 200 kn jours


Macro, Globale (synoptique) ~100 – 100 000 km Mois - années

Essais INERIS

Buncefield

Dispersion toxique et inflammable

Evolution du nuage gazeux

Propriétés physiques

- Densité du nuage / air : conditions T, P normales
- T émission (alourdissement froid / allégement chaud)
- Formation aérosols (ammoniac); brouillard = f (humidité air, T)

Propriétés chimiques

Réaction possible

Conditions initiales de la dispersion : terme source

- Masse ou débit massique
- Dimension de la source
- Hauteur de la source / au sol
- Température

Conditions atmosphériques

Météorologie peut être influencée par : géométrie du site, phénomènes locaux (ascendance près d'un four), incendie ...

Types de gaz

Gaz neutres ou passifs

- Gaz de même densité que l'air ou très dilué
- Fluide uniquement soumis à l'action du fluide porteur, l'air
- Pas de modifications significatives des caractéristiques de l'air

Gaz denses ou lourds (effets de gravité prédominants)

- Gaz plus dense que l'air : Dichlore (Cl2), Phosgène (COCl2)....
- Gaz froid : Hydrogène cryogénique...
- Gaz issu d'un rejet diphasique : Flash d'un rejet d'ammoniac liquide sous pression

Gaz légers

- Gaz moins dense que l'air : Hydrogène (H2), Méthane (CH4)...
- Gaz chaud : fumées d'incendie, ...

Types de turbulence

Turbulences d'origine mécanique

- Liées aux rugosités du sol
- Variations spatiales de vitesse (cisaillement du vent)
 - Dynamique : turbulence dans les couches atmosphériques thermiquement stables

Turbulences d'origine thermique:

- Provoquée par le flux turbulent de chaleur
- Caractéristique importante de la stabilité atmosphérique
 - liées au gradient vertical de densité de l'air, lui-même lié au gradient vertical de la température (flottabilité : stabilité convective)

Turbulence mécanique

Obstacles et Relief

Obstacle passif : mur, bâtiment, rideau d'arbres

- accumulation en amont
- effets de retardement et diminution de la concentration dans l'aval proche

Obstacle actif: rideau d'eau ou de vapeur

- accumulation en amont
- dilution par augmentation du mélange avec l'air ambiant,
- dissolution ou réaction chimique
- effet thermique

Relief

- accélération du nuage sur une pente descendante
- ralentissement du nuage sur une pente ascendante

Obstacles multiples : site industriel

augmentation dans certaines directions des concentrations par un effet de canalisation entre les bâtiments.

Rugosité: valeurs typiques

Terrain Description Terrain	Rugosité de la surface (m)
Neige, aucune végétation	0.005
Piste, terrain plat ouvert, herbe, et quelques obstacles isolés (aéroport)	0.030
Basses récoltes et grands obstacles occasionnels	0.1000
Hautes récoltes et obstacles dispersés, zone d'habitat dispersé	0.300
Park land, buissons, et nombreux obstacles	0.500
Obstacles réguliers (banlieue, forêt, site industriel sans obstacles importants)	1.000
Zone urbaine : ville, sites industriel avec bâtiments importants	3.000

Notions de météorologie

Facteurs météorologiques pilotant la dispersion des polluants :

- Vitesse et direction du vent
- Turbulence atmosphérique

Direction du vent

- Influence sur la zone affectée
- Varie en fonction du parcours !!
- Champs du vent
- Varie avec l'altitude
- Variations avec le temps/position: stimulent la dispersion

Vitesse et direction du vent

Etude météorologique du site

 peut se baser sur un tableau de fréquences de mêmes couples (vitesse, direction) (Tableau de contingence)

Obtention des données station météorologique

- site ≠ lieu de la station météorologique
- ▶ présence de vallées ou de falaises ⇒ modifications notables (vents faibles)

Tableau de contingence doit préciser :

- Lieu de la mesure
- Hauteur de la mesure /sol
- Nombre de mesures : il est conseillé : au moins 1 relevé sur 10 mn toutes les 3 heures pendant 1 an (3 ou 10 ans)

Vitesse du vent varie en fonction de l'altitude :

- Météorologie Nationale : mesures effectuées à 10 m du sol
- → correction de la vitesse du vent à la hauteur de la source (cheminée)

Correction de la vitesse du vent

Loi en puissance (Turner, 1994)

$$u = u_{ref} \ln \left(\frac{z}{z_{ref}} \right)^n$$

u : vitesse du vent à l'altitude z

 u_{ref} : vitesse du vent à l'altitude z_{ref}

n : coefficient dépendant de la stabilité atmosphérique

Loi indépendante de la rugosité du sol.

Etablie pour des émissions en altitude (cheminée), donc non applicable aux faibles altitudes

Correction de la vitesse du vent

Loi en puissance (Turner, 1994)

$$u = u_{ref} \ln \left(\frac{z}{z_{ref}} \right)^n$$

u: vitesse du vent à l'altitude z

u_{ref}: vitesse du vent à l'altitude z_{ref} (10m)

n : coefficient dépendant de la stabilité atmosphérique

Classe de stabilité atmosphérique	n zone urbaine	n zone rurale
А	0.15	0.07
В	0.15	0.07
С	0.20	0.10
D	0.25	0.15
Е	0.40	0.35
F	0.60	0.55

Correction de la vitesse du vent

Loi exponentielle – rugosité du sol

$$U = \frac{U^*}{k} \ln \left(\frac{z}{z_0} \right)$$

U: vitesse du vent à l'altitude z

U*: vitesse de friction (connaissance de v_{vent} à z donnée)

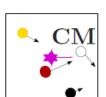
k: constante de Von Karman k = 0.41

z₀: rugosité du sol

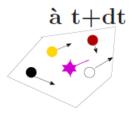
Turbulence thermique

Turbulence thermique

- La stabilité atmosphérique influence la dispersion du panache :
 - des conditions stables dispersent peu le panache
 - des conditions instables dispersent fortement le panache


Composition de l'air

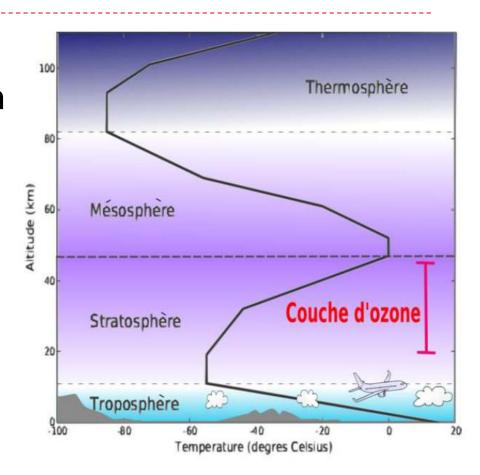
Nom	Formule	Masse molaire	Proportion
		(g mol-1)	/ masse d'air sec
Diazote	N2	28.016	78,08 %
Dioxygène	O2	32	20,95 %
Argon	Ar	39,944	0,934 %
Dioxyde de carbone	CO2	44,1	380 ppm
Néon	Ne		18,18 ppm
Hélium	He		5,24 ppm
Azote	NO ou $N0_2$		5 ppm
Méthane	CH4		1.7 ppm
Dihydrogène	H2		0.5 ppm
Ozone	O3		0 à 0,01 ppm


- ▶ En moyenne, l'air est sec
- ▶ Mair ~ 28,9 g.mol⁻¹
- Gaz parfait

Parcelle d'air

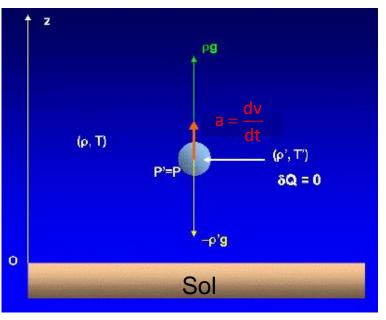
- Ensemble de molécules d'air suffisamment nombreuses pour que les variations des paramètres moyens soient continues.
- Sa taille dépend de l'échelle des phénomènes considérés.
- L'état de la particule n'est connu qu'à travers ses paramètres moyens donc jamais de manière exacte.
- Déplacement de la particule d'air = déplacement du centre de masse
 - + évolution du volume

àt

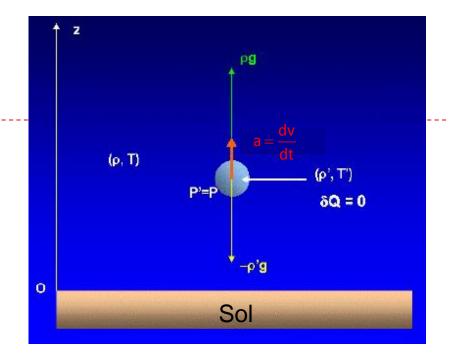

Atmosphère standard de référence

- $T_0 = 288.15 \text{ K} = 15 ^{\circ}\text{C}$
- $P_0 = 1013.25 \text{ hPa} = 1 \text{ atm}$
- $\rho_0 = 1.225 \text{ kg.m}^{-3}$
- Dans la troposphère :

$$T = T_0 + \beta z$$
 avec


$$\beta = \frac{dT}{dz} = -6.5 \text{ K. km}^{-1}$$

 $c_P = 1004,5 \text{ J.K}^{-1}.\text{kg}^{-1}$



Flottabilité

- Composition de l'air en moyenne est uniforme dans les premiers 100 km de l'atmosphère
- Concept de la parcelle d'air sec

- Ensemble homogène de particules d'air : ρ ', T'
- Déplacement adiabatique sur Oz
- T' différent de T atmosphère ambiant ∀z
- P' = P à l'interface de la parcelle
- Atmosphère ambiante au repos : équilibre hydrostatique

Mouvement de la parcelle : $\rho'a = \rho'\frac{dv}{dt} = -\rho'g - \frac{\partial P}{\partial z}$ Equation du mouvement

Air ambiant à l'équilibre (i.e. équilibre hydrostatique de l'atmosphère):

$$\frac{\partial P}{\partial z} = -\rho g$$

$$\frac{\partial P}{\partial z} = -\rho g$$

$$\rho' \frac{dv}{dt} = -\rho' g + \rho g$$

$$\frac{dv}{dt} = g \frac{\rho - \rho'}{\rho'} \quad (1)$$

$$\frac{dv}{dt} = g \frac{\rho - \rho'}{\rho'} \qquad (1)$$

$$f = (\rho - \rho')g$$

Flottabilité = écart entre la poussée d'Archimède et le poids de la parcelle d'air par unité de volume

Si
$$\rho' \prec \rho \longrightarrow f \succ 0$$
 la parcelle monte

Si
$$\rho' \succ \rho \longrightarrow f \prec 0$$
 la parcelle descend

Air : gaz parfait, à pression égale entre l'air et la parcelle (P = P')

$$\frac{P}{\rho T} = \frac{P'}{\rho' T'} \longrightarrow \frac{\rho - \rho'}{\rho'} = \frac{T' - T}{T} \longrightarrow \frac{dv}{dt} = g \frac{T' - T}{T} \qquad (2)$$

Si T'
$$\succ$$
 T (T' \prec T) \longrightarrow la parcelle monte (descend)

Expression de
$$\frac{dv}{dt} = g \frac{T'-T}{T}$$
 en fonction des gradients de température

$$z_0 + \delta z : T' \neq T$$

Parcelle:
$$T'(z_0 + \delta z) \approx T(z_0) + \left(\frac{\delta T}{\delta z}\right)_{adiabatique} \delta z$$

Air: $T(z_0 + \delta z) \approx T(z_0) + \left(\frac{\delta T}{\delta z}\right) \delta z$ (3)

$$z_0 : T' = T$$

$$\frac{dv}{dt} = g \frac{T'-T}{T} \quad (2) \quad \Longrightarrow \quad \frac{dv}{dt} = \frac{1}{T(z_0)} \left[\left(\frac{\delta T}{\delta z} \right)_{\text{adiabatique}} - \left(\frac{\delta T}{\delta z} \right) \right] g \, \delta z \tag{4}$$

$$\frac{dv}{dt} = \frac{1}{T(z_0)} \left[\left(\frac{\delta T}{\delta z} \right)_{\text{adiabatique}} - \left(\frac{\delta T}{\delta z} \right) \right] g \, \delta z$$
 (4)

Atmosphère	Gradient de température	Variation de z	_
Stable	$\left(\frac{\partial T}{\partial z}\right)_{adiab} \prec \left(\frac{\partial T}{\partial z}\right)$	$\delta z > 0$	Accélération $\frac{dv}{dt} < 0$ Air ralentit en montant
		$\delta z < 0$	Accélération $\frac{dv}{dt} > 0$ Air accélère en descendant
Instable	$\left(\frac{\partial T}{\partial z}\right)_{adiab} \succ \left(\frac{\partial T}{\partial z}\right)$	$\delta z > 0$	Accélération $\frac{dv}{dt} > 0$ Air accélère en montant
		$\delta z < 0$	Accélération $\frac{dv}{dt} < 0$ Air ralentit en descendant
Neutre 43	$\left(\frac{\partial T}{\partial z}\right)_{adiab} = \left(\frac{\partial T}{\partial z}\right)$	$\delta z > 0$ $\delta z < 0$	Accélération nulle L'air monte ou descend à vitesse constante ou est immobile

Température potentielle

Bilan d'énergie d'une parcelle d'air sèche de masse unité

$$\delta Q = dU + PdV \qquad (5)$$

• Gaz parfait : $dU = c_v dT$ avec $c_p - c_v = r$ soit $c_v = c_p - \frac{R}{Mw}$

$$dU = c_p dT - \frac{R}{Mw} dT \quad (6)$$

Variation de volume d'une unité de masse de la parcelle :

$$dV = d\left(\frac{1}{\rho}\right) = -\frac{d\rho}{\rho^2}$$

• Gaz parfait - équation d'état par unité de masse : $PV = \frac{R}{Mw}T$

$$\delta Q = dU + PdV$$

$$dU = c_p dT - \frac{R}{Mw} dT$$

$$PdV = -\frac{1}{\rho} dP + \frac{R}{Mw} dT$$
(6)
$$\delta Q = c_p dT - \frac{1}{\rho} dP$$
(8)

Déplacement adiabatique de la parcelle d'air

$$\ln\left(\mathsf{TP}^{-\frac{\mathsf{R}}{\mathsf{Mw}\,\mathsf{c}_{\mathsf{P}}}}\right) = \mathsf{cste} \quad \mathsf{soit} \quad \mathsf{d}\left(\ln\left(\mathsf{TP}^{-\frac{\mathsf{R}}{\mathsf{Mw}\,\mathsf{c}_{\mathsf{P}}}}\right)\right) = 0 \tag{9}$$

Température potentielle θ

La température potentielle est la température de l'air (initialement à T, P) une fois ramenée de façon adiabatique au niveau de pression de référence P_0 .

En désignant par P₀ la pression atmosphérique au sol, par :

$$d\left(\ln\left(TP^{-\frac{R}{Mw c_{p}}}\right)\right) = 0$$
 (9)

On obtient:
$$\theta P_0^{-\frac{R}{Mw c_p}} = TP^{-\frac{R}{Mw c_p}}$$
 (10)

Soit encore :
$$\theta = T \left(\frac{P}{P_0}\right)^{-\frac{R}{Mw c_p}}$$
 avec $c_{Pair} = 1005 \text{ J.K}^{-1}.kg^{-1}$

Il y a donc invariance de la température potentielle θ

$$\theta P_0^{-\frac{R}{Mw c_p}} = T P^{-\frac{R}{Mw c_p}}$$
 (10)

Le gradient de θ s'écrit à partir de (10) :

$$\frac{1}{\theta} \frac{\partial \theta}{\partial z} = \frac{1}{T} \frac{\partial T}{\partial z} - \frac{R}{Mw c_{p}} \frac{1}{P} \frac{\partial P}{\partial z}$$
 (11)

L'invariance de la température potentielle θ lors du déplacement adiabatique d'une parcelle d'air signifie que :

$$\frac{\partial \theta}{\partial z} = 0 \qquad \Longrightarrow \qquad \text{Par (11)} \qquad \left(\frac{\partial T}{\partial z}\right)_{\text{adiab}} = \frac{R}{\text{Mw } c_{P}} \frac{T}{P} \frac{\partial P}{\partial z} \qquad (12)$$

Gradient de température potentielle θ en condition quelconque :

$$\frac{\partial \theta}{\partial z} = \frac{\theta}{T} \left(\frac{\partial T}{\partial z} - \left(\frac{\partial T}{\partial z} \right)_{\text{adiab}} \right) \tag{13}$$

Mesure écart de l'atmosphère par rapport à une transformation adiabatique

Nouvelle formulation des conditions de stabilité

$$\frac{\partial \theta}{\partial z} = \frac{\theta}{T} \left(\frac{\partial T}{\partial z} - \left(\frac{\partial T}{\partial z} \right)_{\text{adiab}} \right) \tag{13}$$

$$\frac{dv}{dt} = \frac{1}{T(z_0)} \left[\left(\frac{\delta T}{\delta z} \right)_{\text{adiabatique}} - \left(\frac{\delta T}{\delta z} \right) \right] g \, \delta z \tag{4}$$

La flottabilité de la parcelle d'air s'exprime en fonction du gradient de température potentielle (par (4) et (13)) :

$$\frac{dv}{dt} = -\frac{1}{\theta} \frac{\partial \theta}{\partial z} g \, \delta z \qquad (14)$$

$$\frac{dv}{dt} = \frac{1}{T} \left[\left(\frac{\delta T}{\delta z} \right)_{\text{adiabatique}} - \left(\frac{\delta T}{\delta z} \right) \right] g \, \delta z = -\frac{1}{\theta} \frac{\partial \theta}{\partial z} g \, \delta z$$
 (14)

Atmosphère	Gradient de température potentielle	Gradient de température	Commentaire
Stable 18 16	$\frac{\partial \theta}{\partial z} \succ 0$	$\left(\frac{\partial T}{\partial z}\right)_{adiab} \prec \left(\frac{\partial T}{\partial z}\right)$	La force de flottabilité sur la parcelle d'air est une force de rappel qui tend à ramener la parcelle d'air à sa position d'équilibre
Instable	$\frac{\partial \theta}{\partial z} \prec 0$	$\left(\frac{\partial T}{\partial z}\right)_{adiab} \succ \left(\frac{\partial T}{\partial z}\right)$	La force de flottabilité sur la parcelle d'air est une force de même signe que le déplacement, donc la parcelle d'air s'éloigne de sa position d'équilibre
Neutre 16 16 16 16 16 16 16 16 16 16 16 16 16	$\frac{\partial \theta}{\partial z} = 0$	$\left(\frac{\partial T}{\partial z}\right) = \left(\frac{\partial T}{\partial z}\right)_{adiab}$	La force de flottabilité sur la parcelle d'air est nulle donc la parcelle d'air reste sur la nouvelle position d'équilibre

Gradient adiabatique de l'air sec

Air ambiant à l'équilibre : $\frac{\partial P}{\partial z} = -\rho g$

avec

 $\left(\frac{\partial T}{\partial z}\right)_{\text{adiab}} = \frac{R}{Mw c_{P}} \frac{T}{P} \frac{\partial P}{\partial z}$ (12)

et

$$\frac{P}{\rho} = \frac{R}{Mw}T$$

Gradient adiabatique de l'air sec :

$$\left(\frac{\partial T}{\partial z}\right)_{\text{adiab}} = -\frac{g}{c_p} < 0 \qquad (15)$$

Gradient adiabatique de l'air sec

Gradient adiabatique de l'air sec :

$$\left(\frac{\partial T}{\partial z}\right)_{\text{adiab}} = -\frac{g}{c_{p}} < 0 \qquad (15)$$

Gradient négatif : une diminution adiabatique de la température avec l'altitude, qui vaut :

l'altitude, qui vaut :
$$\left(\frac{\partial T}{\partial z} \right)_{\text{adiab}} = -\frac{9.81}{1005} \frac{\left[\text{m.s}^{-2} \right]}{\left[\text{J.K.kg}^{-1} \right]} = -0.00976 \, \text{K.m}^{-1}$$
Les observations indiquent un gradient moven de température

Les observations indiquent un gradient moyen de température

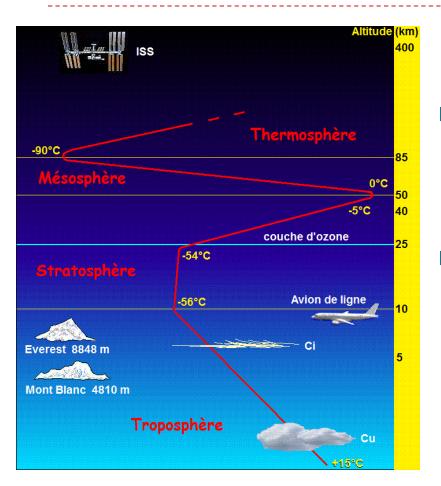
$$\left(\frac{\partial \mathsf{T}}{\partial \mathsf{z}}\right)_{\mathsf{adiab}} \propto -7 \,\mathsf{K.km}^{-1}$$

$$\frac{\partial T}{\partial z} \succ \left(\frac{\partial T}{\partial z}\right)_{\text{adjab}}$$
 Atmosphère stable (air sec)

Inversion de température

Il y a une inversion de température lorsque de l'air chaud se trouve audessus d'une couche d'air plus froid donc plus lourd.

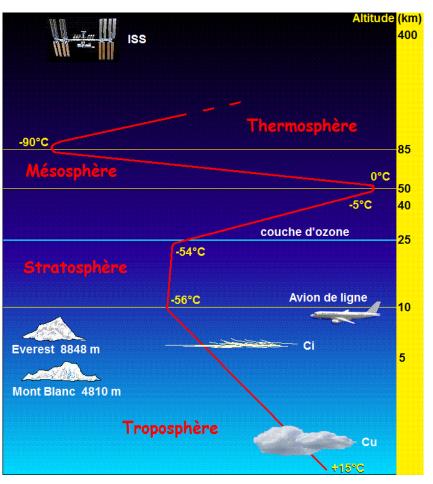
Dans ce cas, la masse d'air qui se trouve près du sol ne peut s'élever et se disperser dans l'atmosphère.



Air situé dans la couche d'inversion, près du sol, est piégé : aucun mouvement turbulent ou de convection ne peut vaincre la résistance de l'atmosphère située au-dessus de cette couche.

Absence de brassage vertical : les substances polluantes sont piégées et s'accumulent

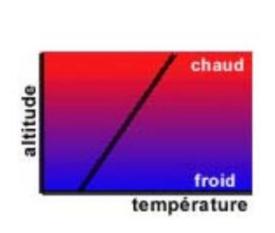
Inversion de température

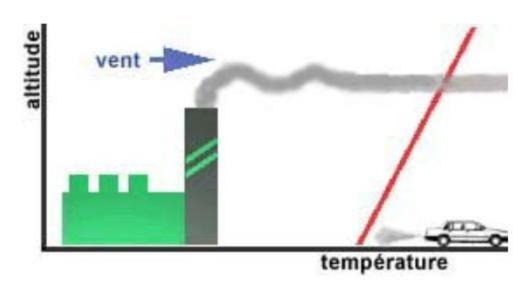


Quand?

Refroidissement rapide par perte de rayonnement infrarouge pendant une nuit claire et calme.

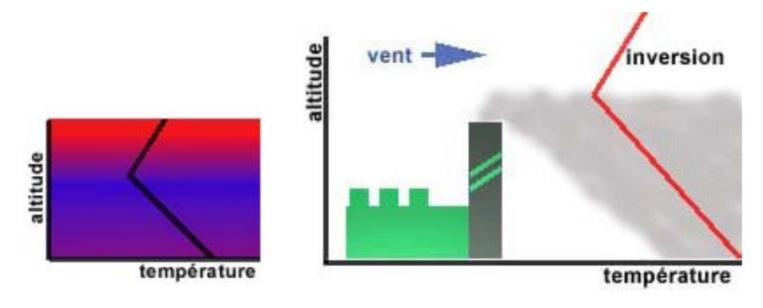
Couche d'air chaud provenant du sud transportée au-dessus d'une couche d'air plus froid des latitudes moyennes


Inversion de température

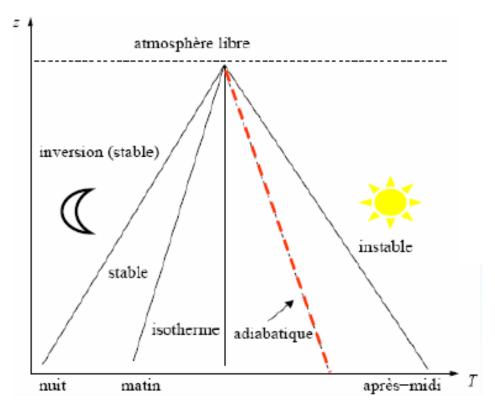


- Il existe 2 cas d'inversion de T :
 - 1er cas : T augmente avec z L'air près du sol est plus froid que l'air plus haut. Dans ces conditions, l'air est stable et le mouvement vertical de l'air ne peut s'effectuer.
 - 2eme cas : T diminue avec z près du sol mais augmente avec z plus haut

Inversion de température - conséquences


▶ 1er cas : T augmente avec l'altitude

Inversion de température - conséquences


2ème cas : T diminue avec z près du sol mais augmente avec z plus haut

Le comportement de la traînée de fumée dépend de la hauteur à laquelle se produit l'inversion.

Evolution de la stabilité atmosphérique au cours de la journée

Gradient de T = écart à une situation adiabatique

La T au sol augmente en cours de journée puis diminue au cours de la nuit.

Atmosphère stable (matin)

$$\frac{\partial \mathsf{T}}{\partial \mathsf{z}} \succ \left(\frac{\partial \mathsf{T}}{\partial \mathsf{z}}\right)_{\mathsf{ac}}$$

Atmosphère neutre

$$\frac{\partial T}{\partial z} = \left(\frac{\partial T}{\partial z}\right)_{ad}$$

Atmosphère instable (après-midi)

$$\frac{\partial \mathsf{T}}{\partial \mathsf{z}} \prec \left(\frac{\partial \mathsf{T}}{\partial \mathsf{z}}\right)_{\mathsf{ad}}$$

Air humide

Atmosphère stable en convection sèche

Atmosphère humide

la condensation de la vapeur d'eau atmosphérique, aux altitudes qui correspondent au point de rosée, libère la chaleur latente de condensation qui induit des conditions d'instabilité atmosphérique, permettant alors le brassage thermique selon la verticale dans l'atmosphère.

Instabilité convective de l'air humide

- Une parcelle d'air humide s'élevant dans l'atmosphère contient une humidité spécifique (H)
 - Humidité spécifique : rapport de la masse volumique de vapeur d'eau contenue dans la parcelle d'air humide et de la masse volumique de cette parcelle d'air
- Il y a condensation lorsque cette humidité spécifique devient égale à l'humidité spécifique saturante (Hsat) qui dépend surtout de la température et très peu de la pression.
 - Humidité spécifique saturante : l'humidité spécifique maximale atteinte avant la condensation.
- T(z) Hsat (z)

à z donnée, appelée niveau de condensation, on obtient $H = H_{sat}$ la vapeur d'eau condense en minuscules gouttelettes d'eau liquide formation d'un nuage.

• La condensation de l'eau est exothermique $\delta Q > 0$:

$$\delta Q = -m_a L_v df_{m,v}$$

ma: masse d'air

Lv : chaleur latente de vaporisation de la vapeur d'eau

 $(2.5 \times 10^6 \text{ J.kg}^{-1} \text{ à } 273 \text{ K})$

 $f_{m,v}$: fraction massique de vapeur d'eau : condensation $f_{m,v} < 0$

- Ce dégagement de chaleur entraîne une diminution de la masse volumique de la parcelle d'air, augmentant alors sa flottabilité.
- L'ascension de la parcelle d'air est donc accélérée : le mouvement convectif vertical est instable.

- L'intensité de la convection de l'air humide dépend donc :
 - du profil de température dans la troposphère
 - de l'humidité atmosphérique
 - de la température à la surface du sol
- Une atmosphère sèche est donc plus stable qu'une atmosphère humide

Mesures de la turbulence

- Mesure de la turbulence donnée par l'écart-type σ_{xyz} des fluctuations du vent sur un intervalle de temps (1 heure)
- σ_{xyz} dépend de
 - La distance horizontale entre le point de rejet et le point d'intérêt
 - Des conditions de stabilité atmosphérique
 - De la vitesse du vent
 - De la rugosité de la surface
 - De la hauteur de la source

- Turbulence homogène dans l'espace et stationnaire dans le temps avec un champ de vent moyen uniforme
- Diffusivité turbulente dans la direction du vent << convection (vents forts)

Coefficient de diffusion $\sigma_{x} = \frac{2K_{x}(x-x_{0})}{u}$

• $\sigma = A x^n$ avec A, n : valeurs expérimentales

- Stabilité atmosphérique augmente alors σ diminue
 - Nuit nuageuse avec vitesse vent faible : la stabilité atmosphérique est très élevée et écart-type sont petits
 - Temps nuageux l'après-midi d'été avec des vitesses de vents faibles, alors la stabilité est faible: condition instable et écart-type important
- Les stabilités ou instabilités extrêmes se produisent uniquement pour vents faibles.
- Pour des vitesses de vent élevées, la stabilité est toujours neutre avec des valeurs intermédiaires de σ

Ensoleillement

Couverture ciel	Elévation du soleil (angle A en degrés)			
	A > 60°	60° ≤ A < 35°	35° ≤ A < 15°	
4/8 ou moins ou nuages élevés minces	Fort	Modéré	Faible	
5/8 à 7/8 nuages 2 km – 6 km	Modéré	Faible	Faible	
5/8 à 7/8 nuages bas < 2 km	Faible	Faible	Faible	

Taux d'ensoleillement Procédure EPA (US Environmental Protection Agency)

Classes de stabilité

Les classes de stabilité

Météorologie Nationale

Instabilité	I	$\frac{\Delta T}{\Delta z} < -0.98 ^{\circ}\text{C} / 100 \text{m}$
-------------	---	---

Vents moyens ou forts Nord ou Sud Conditions favorables à la dispersion de polluants Conditions rares jour et nuit

Neutre	N	$-0.98^{\circ}\text{C}/100\text{m} < \frac{\Delta\text{T}}{\Delta\text{z}} < -0.55^{\circ}\text{C}/100\text{m}$
		Δz

Vents moins forts Conditions plus fréquentes jour et nuit

Stabilité 1 S1
$$-0.55 \,^{\circ}\text{C}/100 \,\text{m} < \frac{\Delta \, \text{T}}{\Delta \, \text{z}} < 0 \,^{\circ}\text{C}/100 \,\text{m}$$

Vents faibles ou calmes Nord-Sud, Est

Stabilité 2 S2
$$\frac{\Delta T}{\Delta z} > 0 ^{\circ}C/100 \text{ m}$$

Vents très faibles ou calmes Nord, Nord-Est, Sud

Nuclear Regulatory Commission Classification de Pasquill

La classe D peut généralement être utilisée indépendamment du vent pour une nuageuse jour ou nuit et pour des conditions météorologiques de nuit.

Classification	Classses de Pasquill	Variation de la température avec l'altitude °C/100 m
Très instable	A	< -1.9
Moyennement instable	В	-1.9 à –1.7
Faiblement instable	С	-1.7 à -1.5
Neutre	D	-1.5 à -0.5
Faiblement stable	Е	-0.5 à 1.5
Moyennement stable	F	1.5 à 4
Très stable	G	> 4

Vitesse du	Ensoleillement			Conditions de nuit	
vent (m.s ⁻¹)	Fort	Modéré	Faible	Faible couverture nuageuse (4/8)	Couverture nuageuse (3/8)
< 2	Α	A - B	В	F	F
2 - 3	A - B	В	С	E	F
3 - 4	В	B - C	С	D	E
4 - 6	С	C - D	D	D	D
> 6	С	D	D	D	D

A: extrêmement instable

B: modérément instable

C : légèrement stable

D : stabilité neutre

E : légèrement stable

F: modérément stable.

Formules de Briggs (1973) Coefficients de dispersion – Source continue

Classes de stabilité Pasquill-Gifford	$\sigma_{ m y}$ (m) x (m)	$\sigma_{\rm z}$ (m) x (m)
Conditions rurales		
A	$0.22 \mathrm{x} \big(1 + 0.0001 \mathrm{x}\big)^{-1/2}$	0.20 x
В	$0.16 \mathrm{x} \big(1 + 0.0001 \mathrm{x}\big)^{-1/2}$	0.12 x
С	$0.11x(1+0.0001x)^{-1/2}$	$0.08 \mathrm{x} (1 + 0.0002 \mathrm{x})^{-1/2}$
D	$0.08 \mathrm{x} \big(1 + 0.0001 \mathrm{x}\big)^{-1/2}$	$0.06 \mathrm{x} (1 + 0.0015 \mathrm{x})^{-1/2}$
Е	$0.06 \mathrm{x} \big(1 + 0.0001 \mathrm{x}\big)^{-1/2}$	$0.03 \mathrm{x} \big(1 + 0.0003 \mathrm{x}\big)^{-1}$
F	$0.04 \mathrm{x} \big(1 + 0.0001 \mathrm{x}\big)^{-1/2}$	$0.016 \mathrm{x} (1 + 0.0003 \mathrm{x})^{-1}$
Conditions urbaines		
A - B	$0.32 \mathrm{x} \big(1 + 0.0004 \mathrm{x}\big)^{-1/2}$	$0.24 \mathrm{x} (1 + 0.0001 \mathrm{x})^{+1/2}$
С	$0.22 \mathrm{x} (1 + 0.0004 \mathrm{x})^{-1/2}$	0.20 x
D	$0.16 \mathrm{x} \big(1 + 0.0004 \mathrm{x}\big)^{-1/2}$	$0.14 \mathrm{x} (1 + 0.0003 \mathrm{x})^{-1/2}$
E-F	$0.11x(1+0.0004x)^{-1/2}$	$0.08 \mathrm{x} (1 + 0.0015 \mathrm{x})^{-1/2}$

A : extrêmement instable - B : modérément instable - C : légèrement stable

D : stabilité neutre - E : légèrement stable - F : modérément stable

Formules de Briggs (1973) Coefficients de dispersion – Source instantanée

Classes de stabilité Pasquill-Gifford	$\sigma_{\rm x}$ (m) ou $\sigma_{\rm y}$ (m)	$\sigma_{\rm z}$ (m) $_{\rm x(m)}$
Α	$0.18 \mathrm{x}^{0.92}$	$0.60\mathrm{x}^{0.75}$
В	$0.14 \mathrm{x}^{0.92}$	$0.53 \mathrm{x}^{0.73}$
С	$0.10\mathrm{x}^{0.92}$	$0.34 \mathrm{x}^{0.71}$
D	$0.06 \mathrm{x}^{0.92}$	$0.15 \mathrm{x}^{0.70}$
E	$0.04\mathrm{x}^{0.92}$	$0.10\mathrm{x}^{0.65}$
F	$0.02\mathrm{x}^{0.89}$	$0.05\mathrm{x}^{0.61}$

A : extrêmement instable - B : modérément instable - C : légèrement stable

D : stabilité neutre - E : légèrement stable - F : modérément stable

Nombre de Richardson

Le nombre de Richardson est défini par :

$$Ri = \frac{N^2}{S^2}$$

Avec $S = \frac{\partial u}{\partial z}$: cisaillement vertical du vent de vitesse u

et
$$N^2 = \frac{g}{T} \left[\left(\frac{\partial T}{\partial z} \right) - \left(\frac{\partial T}{\partial z} \right)_{adjab} \right]$$
 fréquence de Brunt-Väisälä

N² représente la fréquence d'oscillation d'une particule fluide déplacée verticalement autour de sa position d'équilibre

Stabilité atmosphérique et nombre de Richardson

$$N^{2} = \frac{g}{T} \left[\left(\frac{\partial T}{\partial z} \right) - \left(\frac{\partial T}{\partial z} \right)_{adiab} \right]$$

- Si $N^2 < 0$ soit Ri < 0
- Atmosphère instable
- La particule déplacée de son état initial s'éloigne irréversiblement
- La turbulence est soutenue par la convection
- Si $N^2 = 0$ soit Ri = 0
- Stabilité neutre
- La particule déplacée demeure à sa nouvelle altitude.
- Si $N^2 > 0$ soit Ri > 0
- Oscillation de la particule autour de son état initial.

Conditions de forte stabilité (vent modéré)

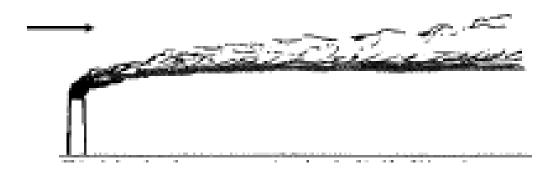
$$\frac{\partial T}{\partial z} > -1^{\circ}C /100m$$

- Configuration nuit claire ou peu après le coucher du soleil ou peu après le lever du soleil
- Couche limite atmosphérique stable
- Les transferts turbulents sont beaucoup plus faibles dans la direction verticale que dans la direction transversale
- Le panache peut être animé de fluctuations latérales de grande période

Conditions de stabilité neutre (vent fort)

- Couverture nuageuse importante
- Couche limite atmosphérique neutre
- Turbulence d'origine dynamique

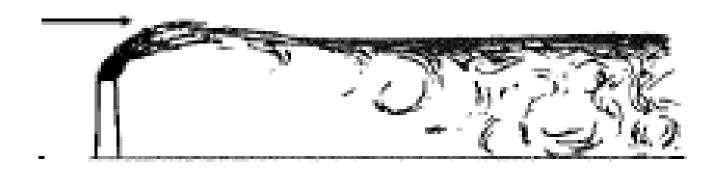
Conditions de forte instabilité (vent faible)


Ri < 0
$$\frac{\partial T}{\partial z} < -1^{\circ}C / 100m$$

- Panache en configuration ciel clair rayonnement solaire intense
- Couche limite atmosphérique instable
- Polluants dispersés rapidement verticalement

- Panache très ouvert
- Part importante du produit émis se disperse sur le sol

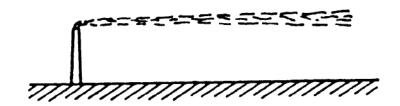
Conditions d'inversion au-dessous du sommet de la cheminée et instabilité au-dessus


- Couche stable à partir du sol qui s'observe souvent vers la fin de l'après-midi
- Cas très favorable : la pus grande partie du panache est diffusée verticalement vers le haut, la diffusion vers le sol étant bloquée par la couche d'inversion

Conditions d'inversion au-dessus du sommet de la cheminée et instabilité au-dessous (1/2)

- Couche instable à partir du sol qui s'observe souvent dans la matinée
- Lorsque la limite supérieure de la couche instable atteint le niveau du panache, les parties les plus basses sont suffisamment diffusées vers le sol assez rapidement alors que la partie supérieure reste intacte

Conditions d'inversion au-dessus du sommet de la cheminée et instabilité au-dessous (2/2)

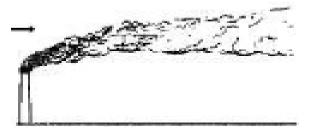


- A la limite, tout le panache sera situé dans la couche instable : c'est le cas du trapping ou la limite inférieure de la couche stable joue le rôle d'un plafond fictif
- La couche d'inversion bloque les phénomènes d'ascendance
- Conditions très défavorables (dites de fumigation)

Synthèse de la stabilité atmosphérique

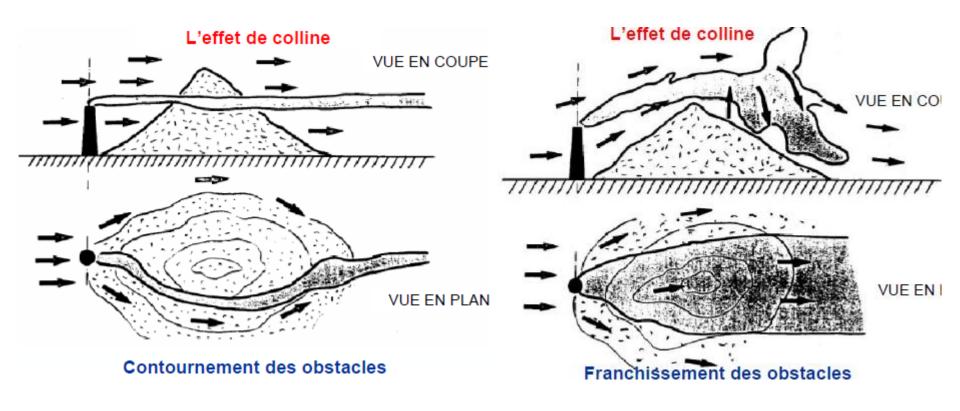
Atmosphère stable

- Non Favorable à la dispersion
- Nuit ciel dégagé


Atmosphère instable

- Favorable à la dispersion
- Journées bien ensoleillées

Situation neutre


- Dispersion pas très importante
- Ciel couvert, périodes de pluie, vitesse vent élevée

Effet du relief

Atmosphère stable

Atmosphère instable

Modélisation: principes généraux

Modélisation

Avantages de la modélisation :

- Non recours à de lourdes techniques expérimentales
- Rapidité de l'étude
- Possibilité d'envisager un grand nombre de situations

MAIS ATTENTION

- Aux hypothèses
- Aux domaines de validité

Etapes de la modélisation

Caractériser un « terme source » : conditions initiales de dispersion

- Débit à la brèche, état physique, température, fraction liquide, vitesse, ...
- Obstacles, dispositif de sécurité, ...

Evaluer la «propagation» de ce terme source dans l'environnement

- Concentrations en fonction du temps et de l'espace
- Météo, relief, rugosité, ...

Estimer «les distances d'effets» du phénomène

Seuils d'effets, doses, ...

Présentation générale

Les gaz intervenant dans la plupart des accidents se comportent comme des gaz lourds

- soit à cause de leur masse volumique,
- soit à cause de leur température de stockage,
- soit parce qu'ils s'apparentent à un aérosol.

La dispersion atmosphérique des gaz est analysée le plus souvent en termes de gaz lourds.

- Problème complexe, tridimensionnel et instationnaire.
- Le nuage, évoluant suivant un mouvement horizontal sous l'influence de sa densité, est déformé par l'écoulement ambiant et dilué par la turbulence dont l'existence est directement liée au gradient de densité sur la verticale.
- La dispersion de gaz est décrite suivant trois ou quatre phases correspondant chacune à un phénomène physique dominant par rapport aux autres (Rottman 1982, Hanna et Drivas 1987).

- La majorité des modèles incorpore seulement quelques processus physiques connus comme étant les plus importants :
 - la poussée, la turbulence, le type de rejet.
- Cependant, il n'est pas toujours certain que tous les phénomènes physiques soient correctement paramétrés et ainsi les non-identifiés peuvent devenir majeurs.
- Il est souhaitable que les modèles soient capables de prévoir la taille d'ensemble et la forme du nuage comme une fonction du temps et de fournir des estimations des propriétés de turbulence dans le nuage.

Catégories de modèles

Différences entre les modèles

- Manière de traiter la turbulence
- Manière de traiter l'effet de la turbulence sur la vitesse de dilution du nuage

Modèles Gaussiens

- Modèles de dispersion passive
- Dispersion pilotée uniquement par la turbulence atmosphérique
- Validité : 100 m à 10 km

Modèles intégrales

- Equations de la mécanique des fluides simplifiées
- Validité : 20 m à 10 km

Modèles 3D ou CFD

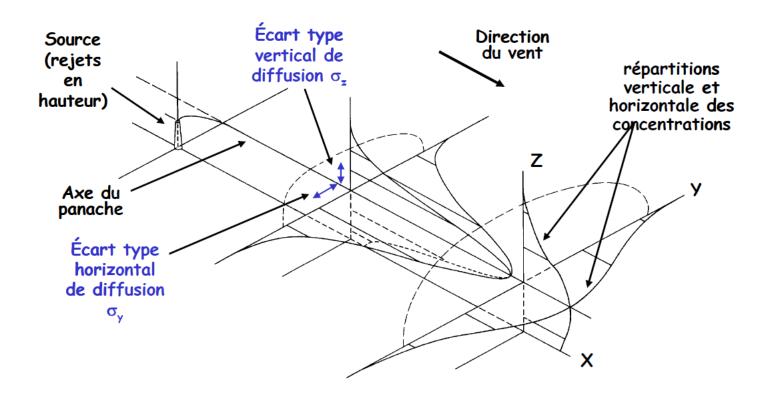
- Prise en compte des effets de turbulence, de terrains non- uniformes, d'échanges de chaleur....
- Validité : 1 cm à 2 km

Modèle Gaussien

Modèle Gaussien

Principes

Solution de l'équation de dispersion : loi de distribution gaussienne dans l'espace


Applications

- Gaz passif (rejet de gaz dont la densité est voisine de celle de l'air)
- Rejet simple dans un environnement sans obstacles

Hypothèses et limitations

- Néglige la diffusion moléculaire
- Champs de vent uniforme (en vitesse et direction) dans le temps et l'espace
- Pas d'obstacles, pas de relief
- Turbulence homogène et isotrope
- Distances supérieures à 100 m

Paramètres nécessaires

Dispersion de gaz (léger) – Source continue - Plume Modèle

- Variable importante: hauteur de la source / sol (hauteur de la cheminée)
- Evolution du panache liée directement
 - à la quantité de mouvement du rejet (masse de gaz libérée x vitesse à la sortie)
 - aux forces de poussée (différence de densité, température)
 - ▶ en général Tsortie du gaz > 10 à 15 °C de Tair → forces de poussée prédominent
- Forces de quantité de mouvement : 30-40 secondes
- Forces de poussée : 3-4 minutes

Cas des cheminées - terme correctif - diminution de la hauteur par effet de vortex

Près de la partie supérieure de la cheminée H_s, un vortex latérale fait diminuer la hauteur du rejet

$$\Delta H = H_s + 2 d \left(\frac{u_s}{u} - 1.5 \right)$$

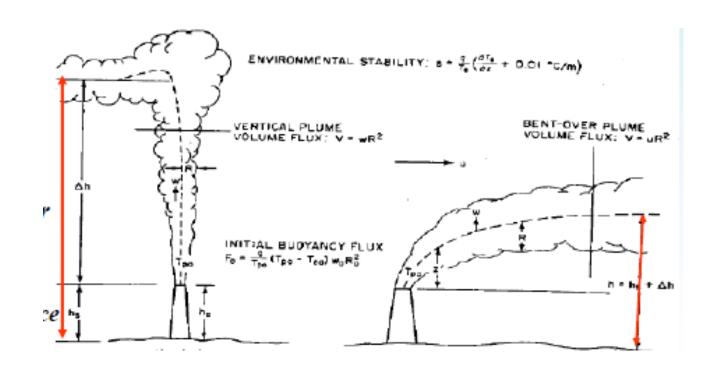
d : diamètre interne de la cheminée (m)

H_s: hauteur de la cheminée (m)

u_s: vitesse de sortie du gaz (m.s⁻¹)

u : vitesse du vent (m.s⁻¹)

Condition: $u_s < 1.5 u$


Cas des cheminées - terme correctif - augmentation de la hauteur

Hauteur effective H

Sur-hauteur ∆H

+

Hauteur source H_s

Equation Holland

$$\Delta H = \frac{u_s d}{u} \left[1.5 + 2.68 Pd \left(\frac{T_s - T_a}{T_s} \right) \right]$$

d : diamètre interne de la cheminée (m)

P: pression atmosphérique (bar)

T_s: température du gaz à l'intérieur de la cheminée (K)

T_a : température de l'air (K)

u_s: vitesse de sortie du gaz (m.s⁻¹)

u : vitesse du vent (m.s⁻¹)

Condition : $|u_s| \ge 1.5 u$

Evolution du panache par poussée et quantité de mouvement

L'évolution du panache est pilotée par les forces de poussée si le critère est vérifié :

$$\left(\mathsf{T}_{\mathsf{s}} - \mathsf{T}_{\mathsf{a}}\right) \geq \Delta \mathsf{T}_{\mathsf{c}}$$

Ts : température du gaz libéré (K)

Ta : température de l'air (K)

Stabilités A, B, C ou D :

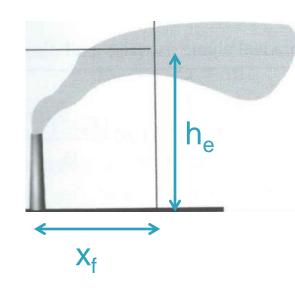
$$\Delta T_{c} = 0.0297 T_{s} \left(\frac{u_{s}}{d^{2}}\right)^{1/3} \text{ si } F_{b} < 55$$

$$\Delta T_{c} = 0.00575 T_{s} \left(\frac{u_{s}}{d^{2}}\right)^{1/3} \text{ si } F_{b} \ge 55$$

$$F_b = gu_s d^2 \left(\frac{T_s - T_a}{4T_s} \right)$$

 $(T_s - T_a) \ge \Delta T_c$

▶ Stabilités E ou F :


$$\Delta T_c = 0.019582 T_s u_s \sqrt{s}$$
 avec $s = \frac{g}{T_a} \frac{\partial \theta}{\partial z}$

$$\frac{\partial \theta}{\partial z} = 0.020 \text{ K.m}^{-1} \text{ , classe E}$$

$$\frac{\partial \theta}{\partial z} = 0.035 \text{ K.m}^{-1} \text{ , classe F}$$

Distances maximales

Distance maximale x_f: distance aval depuis la source pour laquelle le panache a atteint sa taille maximale

Phénomène pilote	Classes A, B, C, D	Classes E, F
Poussée	$F_b < 55 : x_f = 49 F_b^{5/8}$ $F_b \ge 55 : x_f = 119 F_b^{2/5}$	$x_{f} = 2.0715 \frac{u_{s}}{\sqrt{s}}$ $s = \frac{g}{T_{a}} \frac{\partial \theta}{\partial z}$
Quantité de mouvement	$F_b = 0 : x_f = \frac{4d(u_s + 3u)^2}{u_s u}$ $F_b < 55 : x_f = 49 F_b^{5/8}$	$x_f = 0.50 \pi \frac{u_s}{\sqrt{s}}$
	$F_b \ge 55 : x_f = 119 F_b^{2/5}$	

Hauteur du panache jusqu'à la distance x_f

Phénomène pilote	Classes A, B, C, D	Classes E, F
Poussée	$h_{e} = (\Delta H + H_{s}) + 1$	$60 \frac{\left(F_{b} x^{2}\right)^{1/3}}{u}$
Quantité de mouvement	$h_e = (\Delta H + H_s) + 1.60 \left(\frac{3F_m x}{\beta^2 u^2}\right)^{1/3}$	$h_{e} = (\Delta H + H_{s}) + \left(3F_{m} \frac{\sin(x\sqrt{s}/x)}{\beta^{2}u\sqrt{s}}\right)^{1/3}$
$s = \frac{g}{T_a}$	$\beta = \frac{1}{3} + \frac{u}{u_s}$	$F_{m} = u_{s}^{2} d^{2} \left(\frac{T_{a}}{4T_{s}} \right)$

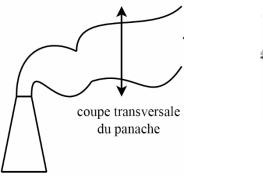
Hauteur finale du panache au-delà de la distance x_f

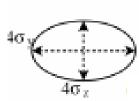
Phénomène pilote	Classes A, B, C, D	Classes E, F
Poussée	$F_{b} < 55: h_{e} = (\Delta H + H_{s}) + 21.425 \frac{F_{b}^{3/4}}{u}$ $F_{b} \ge 55: h_{e} = (\Delta H + H_{s}) + 38.710 \frac{F_{b}^{3/5}}{u}$	$h_e = \left(\Delta H + H_s\right) + 2.60 \left(\frac{F_b}{us}\right)^{1/3}$
Quantité de mouvement	$h_e = (\Delta H + H_s) + 3d \frac{u_s}{u}$	la plus petite valeur : $h_e = (\Delta H + H_s) + 3d \frac{u_s}{u}$ $h_e = (\Delta H + H_s) + 1.5 \left(\frac{F_m}{u\sqrt{s}}\right)^{1/3}$

 $s = \frac{g}{T_a} \frac{\partial \theta}{\partial z} \qquad \qquad F_m = \frac{1}{3} + u_s^2 d^2 \left(\frac{T_a}{4 T_s} \right)$

Equation de concentration : modèle gaussien

Sutton 1932 - Pasquill 1961,1974 - Doury 1977, 1986


Les écarts-type dépendent de :

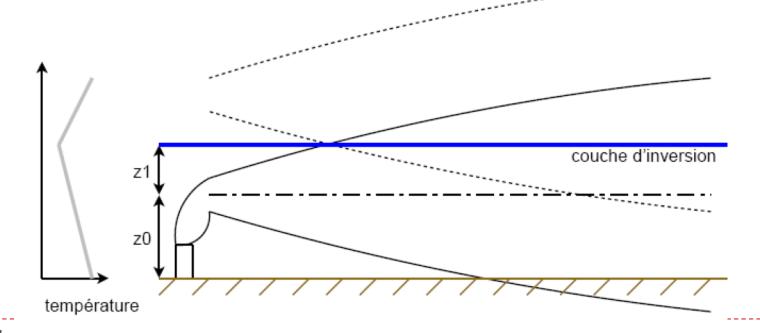

- la distance de la source
- du temps de transfert (temps écoulé depuis l'émission)
- des conditions atmosphériques

Pour une source continue libérant un produit avec un débit Q_m, la concentration au point de coordonnées (x,y,z) est définie par :

$$c(x,y,z,h) = \frac{Q_m}{2 \pi u \sigma_y \sigma_z} exp\left(-\frac{y^2}{2 \sigma_y^2}\right) \left[exp\left(-\frac{(z-h)^2}{2 \sigma_z^2}\right) + exp\left(-\frac{(z+h)^2}{2 \sigma_z^2}\right)\right]$$

où σ_x , σ_y et σ_z sont les écarts-types \Rightarrow indicateurs de la dispersion, étalement du produit \Rightarrow coefficient σ de dispersion (m)

La distance correspondante à la concentration moyenne maximale au sol le long de l'axe x est donnée par :


$$\sigma_{z} = \frac{H}{\sqrt{2}}$$

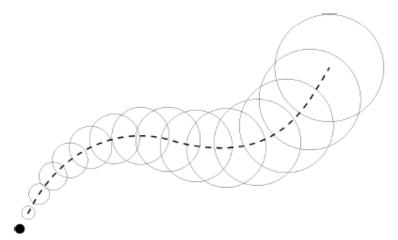
La concentration moyenne maximale au sol le long de l'axe x est :

$$c(x,0,0) = \frac{2Q_{m}}{e \pi u H^{2}} \left(\frac{\sigma_{z}}{\sigma_{y}}\right)$$

Réflexion parfaite sur la couche d'inversion (pas de perte) : source virtuelle placée en z0 + 2 z1

$$c(x) = \frac{Q_m}{2 \pi u \sigma_y \sigma_z} exp \left(-\frac{y^2}{2 \sigma_y^2} \right) \left[exp \left(-\frac{(z-z_0)^2}{2 \sigma_z^2} \right) + exp \left(-\frac{(z-z_0-2z_1)^2}{2 \sigma_z^2} \right) \right]$$

Cas d'une source au niveau du sol


$$c(x,y,z) = \frac{Q_m}{\pi u \sigma_y \sigma_z} exp\left(-\frac{y^2}{2 \sigma_y^2}\right) exp\left(-\frac{z^2}{2 \sigma_z^2}\right)$$

Modèle Gaussien Plume Avantages et Inconvénients

Avantages	Inconvénients
Expressions analytiques	Source continue Pas d'obstacles, pas de relief
Simplicité de programmation	Champ de vent uniforme (vitesse te direction)
Temps de calcul faible	
Littérature abondante pour les paramètres	Qualité des résultats dépend des paramètres

Dispersion de gaz (léger) – Source instantanée - Puff Modèle

- Une bouffée ponctuelle est émise dans Npuff intervalles de temps successifs ∆tpuff de durée et contient M = Q x ∆tpuff
- Chaque bouffée évolue de manière indépendante selon un modèle gaussien
- La concentration en un point est calculée en sommant sur l'ensemble des bouffées i

Types de bouffées

- Rejet à une température beaucoup plus élevée qu'à une température ambiante
- Rejet suite à une détonation ou combustion d'une durée inférieure à 15 s

Terme de poussée due à l'énergie ΔH :

$$F_{bi} = \frac{gM_i}{\pi \rho_a} \frac{\Delta H}{c_{pa} T_a}$$

g : terme de gravité

M_i: masse totale dans la bouffée (kg)

ΔH: énergie libérée (kJ.kg⁻¹)

 ρ_a : masse volumique de l'air (kg.m⁻³)

c_{pa} chaleur spécifique de l'air (kJ.kg⁻¹.K⁻¹)

T_a: température de l'air (K)

$$F_{bi} = \frac{gM_i}{\pi \rho_a} \frac{\Delta H}{c_{pa} T_a}$$

avec
$$\Delta H = c_{pgaz} (T_{gaz} - T_a)$$

et hypothèse: $c_{pgaz} = c_{pa}$
$$F_{bi} = \frac{gM_i}{\pi \rho_a} \frac{(T_{gaz} - T_a)}{T_a}$$

Cas des explosions, pour éviter des surestimations

$$F_{bi} = \frac{3}{4} \frac{gM_i}{\pi \rho_a} \frac{\Delta H}{c_{pa} T_a}$$

Grandeurs caractéristiques de l'ensemble des bouffées

Classes A, B, C, D

Classes E, F

Hauteur pour $x \le x_{max}$

$$h_e = h_s + \left(\frac{2F_{bi} x^2}{c^3 u^2}\right)^{1/4}$$

$$h_{e} = h_{s} + \left(\frac{4F_{bi}}{c^{3}s}\left[1 - \cos\left(\frac{x\sqrt{s}}{u}\right)\right] + \left(\frac{R}{c}\right)^{4}\right)^{1/4} - \frac{R}{c}$$

Valeur de x_{max}

$$F_{bi} \! \leq \! 300 u^{2/3} \, : x_{max} \, = \, 12 \, F_{bi}^{1/2} \, u^{1/3}$$

$$F_{bi} > 300u^{2/3} : x_{max} = 50 F_{bi}^{1/4} u^{1/2}$$

Hauteur finale pour $x > x_{max}$

$$h_e = h_s + \left(\frac{2F_{bi} x_{max}^2}{c^3 u^2}\right)^{1/4}$$

$$x_{max} = \frac{\pi u}{\sqrt{s}}$$

$$h_{e} = h_{s} + \left(\frac{8F_{bi}}{c^{3}s} + \left(\frac{R}{c}\right)^{4}\right)^{1/4} - \frac{R}{c}$$

c coefficient d'entraînement instantané, par défaut c = 0.64 m

$$s = \frac{g}{T_a} \frac{\partial \theta}{\partial z}$$

Equation de concentration

Pour une source instantanée libérant une masse totale M_i (kg), la concentration C (kg,m⁻³) au point de coordonnées (x,y,z) et à un temps t est

définie par :

$$c = \frac{M_i}{(2\pi)^{3/2}} \frac{e^{-1}}{\sigma_x \sigma_y \sigma_z} e^{-1} \left[\frac{(x-ut)^2}{2\sigma_x^2} \right] e^{-1} \left[\frac{y^2}{2\sigma_y^2} \right] e^{-1} \left[\frac{y^2}{2\sigma_y^2} \right] e^{-1} \left[\frac{(h_e - z)^2}{2\sigma_z^2} \right] + e^{-1} \left[\frac{(h_e + z)^2}{2\sigma_z^2} \right] e^{-1} e^{-1$$

où σ_x , σ_v et σ_z sont les écarts-types

Cas d'une source au niveau du sol :

$$c = \frac{M_i}{\left(2\pi\right)^{3/2}\sigma_x\sigma_y\sigma_z} exp\left(-\frac{\left(x-ut\right)^2}{2\sigma_x^2}\right) exp\left(-\frac{y^2}{2\sigma_y^2}\right) exp\left(-\frac{z^2}{2\sigma_z^2}\right)$$

Vitesse moyenne du vent

Vitesse moyenne de vent calculée entre la hauteur de la bouffée la plus basse et la hauteur de la bouffée la plus haute.

$$u = \frac{u_{ref}}{(z_t - z_b)z_{ref}^p(1+p)}(z_t^{1+p} - z_b^{1+p})$$

$$\begin{array}{lll} \text{si } h_{e}-2.15\,\sigma_{z}>2:\,z_{b}=h_{e}-2.15\,\sigma_{z} & \text{si } h_{e}+2.15\,\sigma_{z}< h_{e}^{\text{max}}:\,z_{t}=h_{e}+2.15\,\sigma_{z} \\ \text{si } h_{e}-2.15\,\sigma_{z}\leq2:\,z_{b}=2m & \text{si } h_{e}+2.15\,\sigma_{z}\geq h_{e}^{\text{max}}:\,z_{t}=h_{e}^{\text{max}} \end{array}$$

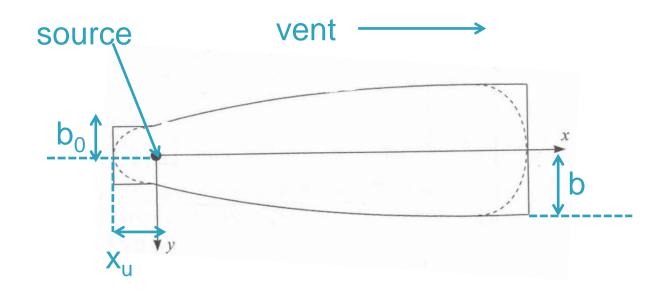
h_e hauteur finale du panache de bouffée

Temps spécifiques

On définit à un point (x, 0, h_e) le temps spécifique :

- d'arrivée de la bouffée
- de départ de la bouffée de ce même point (x, y, z)
- de concentration maximale dans la bouffée

$$t_a = \frac{x - 2.45 \sigma_x}{\overline{u}}$$

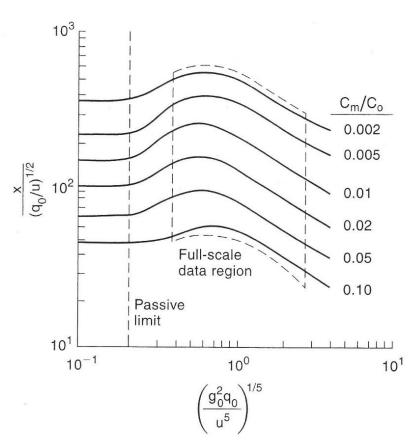

$$t_d = \frac{x + 2.45 \sigma_x}{\overline{u}}$$

$$t_{\text{max}} = \frac{x}{11}$$

Modèle Gaussien Puff Avantages et Inconvénients

Avantages	Inconvénients
Emissions qui varient dans le temps	Nombre de sources limité
Facilité d'implantation	Champ météorologique uniforme dans une bouffée
Champ météorologiques varient d'une bouffée à l'autre et dans le temps	Pas d'obstacles, pas de relief
Possibilité de rajouter des processus spécifiques (dépôt, décroissance)	De manière approximative

Dispersion de gaz lourd – Source continue



Rejet continue de gaz par une source de rayon initial b₀ (m)

La dispersion prend place à une distance x_u

Le nuage formé est considéré comme plat.

Dispersion de gaz lourd – Source continue

Critère de source continue:

$$\left(\frac{\mathsf{g}_0\,\mathsf{q}_0}{\mathsf{u}^3\,\mathsf{D}_\mathsf{c}}\right)^{1/3} \,\geq\, 0.15 \qquad \mathsf{avec} \qquad \mathsf{D}_\mathsf{c} = \left(\frac{\mathsf{q}_0}{\mathsf{u}}\right)^{1/2}$$

$$g_0 = \frac{g(\rho_{gaz} - \rho_a)}{\rho_a}$$
 g_0 correction de la gravité

q₀ le débit volumique du panache initiale (m³.s⁻¹)

u vitesse du vent à 10 m d'altitude (m.s⁻¹)

D_c dimension caractéristique de la source pour un rejet de gaz dense continue (-)

c_{max} concentration maximale en x (kg.m⁻³)

c₀ concentration initiale à la source (kg.m⁻³)

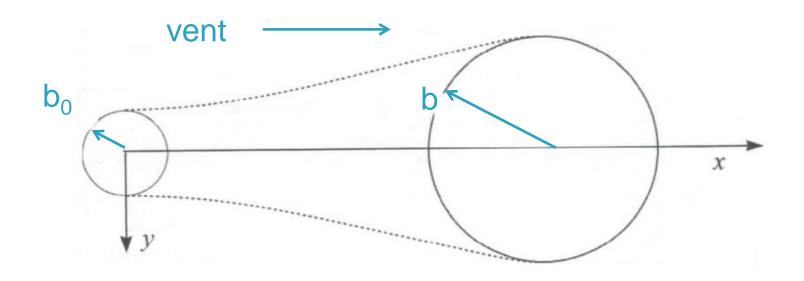
Largeur b du nuage en x

$$b = 2b_0 + 8L_b + 2.5L_b^{1/3} x^{2/3}$$

avec
$$L_b = \frac{g_0 q_0}{u^3}$$

Hauteur b_z du nuage

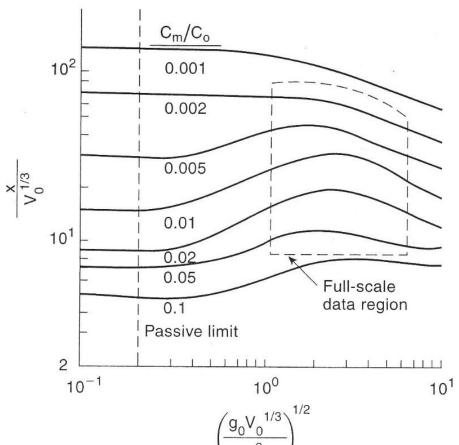
$$b_z = \frac{q_0}{2 u b}$$


Distance maximale x_{max} de dispersion

$$\mathbf{x}_{\mathsf{u}} = \mathbf{b}_{\mathsf{0}} + 2 \, \mathbf{L}_{\mathsf{b}}$$

Applicable si à une distance x la durée de la dispersion est

$$t_r(s) > 2.5 \frac{x}{u}$$


Dispersion de gaz lourd - Source instantanée

Rejet instantané d'un volume V_0 (m³) de gaz conduit à un panache de rayon initial b₀ (m)

Le centre du panache se déplace selon x tandis que le rayon b(m) augmente avec x.

Dispersion de gaz lourd – Source instantanée

Critère de source instantanée

$$\frac{\sqrt{\mathsf{g}_0\,\mathsf{V}_0}}{\mathsf{u}\,\mathsf{D}_\mathsf{i}} \geq \, 0.20 \qquad \text{avec} \qquad \mathsf{D}_\mathsf{i} = \mathsf{V}_0^{\,1/3}$$

$$g_0 = \frac{g(\rho_{gaz} - \rho_a)}{\rho_a}$$
 g_0 correction de la gravité

D_i dimension caractéristique de la source pour un rejet de gaz dense instantané (-)

V₀ volume de gaz dense dégagé (m³) u vitesse du vent à 10 m d'altitude (m.s-1)

c_{max} concentration maximale en x (kg.m⁻³)

c₀ concentration initiale à la source (kg.m⁻³)

Largeur b de la bouffée en x

$$b = \sqrt{b_0^2 + 1.2 t \sqrt{g_0 V_0}}$$

Temps associé à x

$$x = 0.4 ut + b$$

Hauteur moyenne de la bouffée b_z

$$b_z = \frac{c_0 V_0}{\pi b^2 c_{max}}$$

Dispersion de gaz lourd Rejet non-isotherme

Modèle de Britter-McQuaid

Ajustement sur la concentration si dégagement non-isotherme dégagement de vapeur

$$c = \frac{c^*}{c^* + (1 - c^*) \left(\frac{T_a}{T_0}\right)}$$

- c concentration effective
- c* concentration initiale
- T_a température ambiante
- T₀ température de la source

Modèle Intégral

Modèle Intégral

Principes

 Résolution simplifiée des équations de la mécanique des fluides (Van Ulden 1974)

Applications

- Gaz neutres, gaz denses et parfois gaz légers
- Dispersion des jets de cheminée appliquée à la dispersion des gaz denses

Hypothèses et limitations

- Intègre différents modèles (modèle de jet, de gaz dense, de gaz léger...)
 - effets de turbulence dynamique, pour les rejets sous forme de jet à grande vitesse d'émission;
 - effets de gravité, pour les rejets de gaz lourds ;
 - effets de flottabilité pour les rejets de gaz légers.
- Modèle gaussien conservé dans la phase finale de la dispersion
- Approche paramétrique
- Mauvaise représentation des conditions météorologiques extrêmes
- Relief et obstacles non pris en compte
- Inadapté pour des rejets faible vitesse / vent faible (diffusion moléculaire négligée)

Avantage

faible coût (matériel + temps machine)

Modèle CFD

Modèle CFD

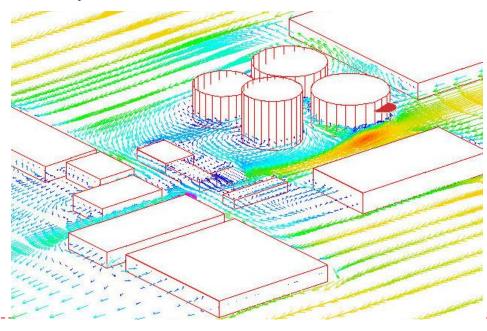
Principes

Résolution des équations de la mécanique des fluides

Applications

 Prise en compte de l'ensemble des phénomènes intervenant de façon significative sur la dispersion (qu'ils soient liés à l'atmosphère comme la turbulence, ou au site comme les obstacles et le relief)

Hypothèses et limitations


- Nombreuses données d'entrée à collecter
- Temps de calcul important
- Complexité des modèles numériques : nombreux paramètres numériques de
- « calage »
- Précision dépendant de la méthode de résolution, du maillage utilisé, du choix des modèles...

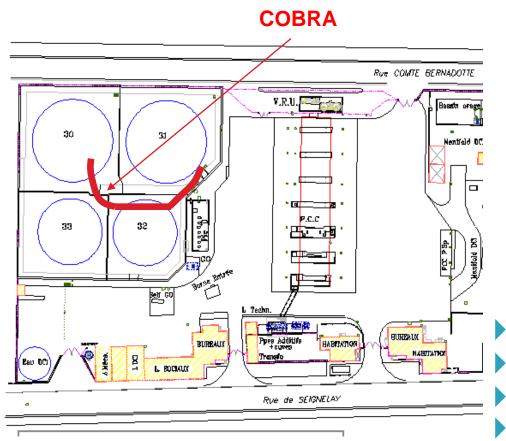
Champ de vitesse du vent dans l'espace

- Equations de conservation
- Conditions aux limites

Champ des concentrations : bilan de matière

- Transport du polluant par le courant moyen
- Diffusion turbulente
- Diffusion moléculaire
- Gravité

Modèle CFD Avantages et Inconvénients


Avantages	Inconvénients
Résolution des équations de la mécanique des fluides	Complexité des modèles numériques
Prise en compte de l'ensemble des processus influençant la dispersion : écoulement, turbulence, obstacles, relief	Temps de calcul élevé Influence du maillage Précision dépendant de la méthode de résolution, choix des modèles
Possibilités de coupler les modèles : chimie, aérosols	
Vrai pour tous les modèles !!!	La modélisation de la turbulence est fondamentale mais reste difficile
128	

Calage et validation

- Nécessité d'avoir des essais pour caler des modèles
- Analyse des campagnes expérimentales difficiles : manque de données, pas assez de capteurs, contexte de réalisation
- Comparaison entre concentrations moyennes calculées et concentrations réelles mesurées difficile à interpréter
- Problème de reproductibilité d'un essai dans des conditions pourtant quasiment identique
- Lors des essais, des conditions météo peu fréquentes : stable, vent faible

Exemple Dispersion de gaz lourd

Dispersion des gaz lourds : dégazage d'un réservoir d'essence

Hypothèses:

- ▶ Effluent : vapeurs d'essence 95
- Débit : 19 000 m³/h
- Vitesse du vent : u = 5 m/s
- Température : T = 15°C
- Pression : P = 1 atm

Mécanisme de dispersion de gaz lourds

Phases d'évolution d'un panache formé de gaz lourds :

- Phase d'éjection au niveau de la source
 - Phase 1 : influence des caractéristiques de la source (débit, vitesse du rejet, densité)
- Effondrement du nuage)
- Rampement sur le sol

Phases 2 et 3 : couplage des caractéristiques de la source et de l'environnement (vitesse du vent, relief, taux de dilution, densité)

Dispersion passive Phase 4: influence de l'environnement

Première phase : rejet

- Mouvement du fluide fonction des conditions de libération du gaz.
- Nuage soumis à deux forces :
 - la force résistante associée à l'écoulement atmosphérique autour du nuage ;
 - la force de poussée due à la gravité et à la différence de densité entre le nuage et l'air environnant.
- Une estimation de l'importance de ces forces est donnée par le nombre de Richardson

Nombre de Richardson:

$$R_i = g \left(\frac{\rho_0 - \rho_A}{\rho_0} \right) \frac{h_0}{u_0^2}$$

 ρ_0 et h_0 : densité et hauteur initiale du nuage,

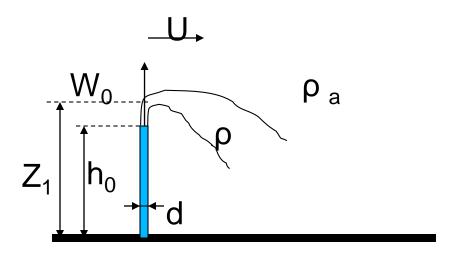
U₀ : vitesse moyenne caractéristique de l'écoulement ambiant

 ρ_A : densité de l'air ambiant.

- Si R_i est petit, le mouvement est déterminé par l'écoulement ambiant.
 Le nuage ne s'effondre pas, il est transporté.
- Si R_i est grand le mouvement est déterminé par l'effet de gravité et c'est alors que le nuage s'effondre au sol.

Il existe 3 types de dégagement pour lesquels le nombre de Richardson s'applique :


- dégagement instantané (se produisant en quelques secondes)
- dégagement continu ou niveau du sol (plusieurs minutes avec peu ou pas de variation dans le débit d'écoulement)
- jet continu
- Dans le cas d'un rejet instantané


si Ri > 700 : gaz dense

Dans le cas d'un rejet continu

si Ri > 32 : gaz dense

Exemple : source isolée – Partie 1 rejet

Phénomène physique prédominant :

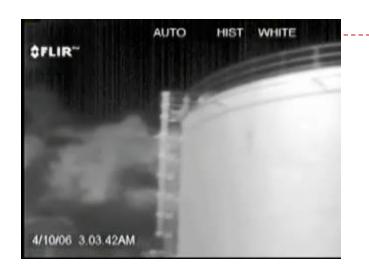
Quantité de mouvement du panache pW

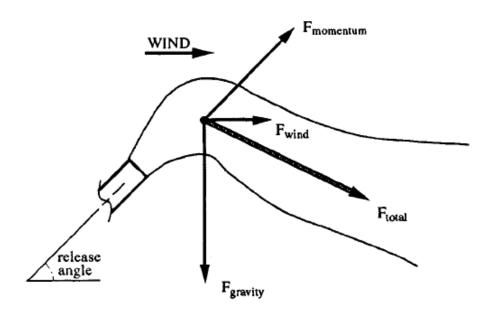
Fonction du débit et du diamètre de la source

Paramètre caractéristique :

hauteur atteinte

$$z_1 = f\left(\frac{W_0}{U}, \frac{gd\Delta\rho/\rho_a}{U^2}, \frac{d}{h_0}\right)$$
 $z_1 = f\left(\frac{W_0}{U}, \frac{gd\Delta\rho/\rho_a}{U^2}, \frac{d}{h_0}\right)$

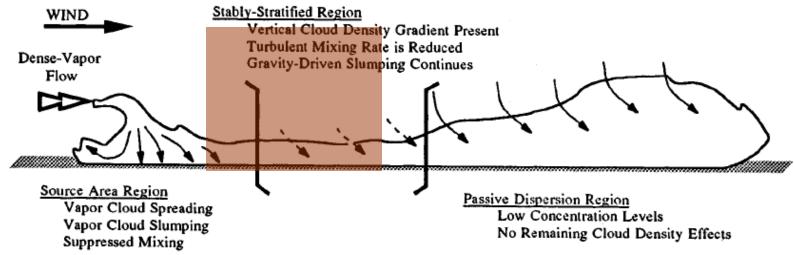

$$\label{eq:Z1_def} \textbf{Z}_{\text{1}} \text{ croît avec} \qquad \frac{W_0}{U} \quad \text{et} \quad \textbf{d}$$


$$Z_1$$
 décroît avec $\frac{\Delta \rho}{\rho_a}$

Deuxième phase : Effondrement

- Commence lorsque l'accélération verticale devient petite comparée à la gravité réduite.
- Mouvement principalement horizontal.
- Le mélange, pendant cette phase, est dû à la turbulence engendrant un mouvement latéral. Cette turbulence est créée à la surface supérieure du nuage en contact avec l'air.
- La différence de densité engendre des tourbillons et une vitesse d'écoulement qui varie suivant la verticale.

Exemple : source isolée - Partie 2



- Phénomène physique prédominant : Forces de gravité
- Paramètre caractéristique :
 Nombre de Froude

$$F_r = \frac{\text{force d'inertie}}{\text{force de gravit\'e}} = \frac{U}{\sqrt{gd}}$$

Troisième 3: Rampement sur le sol

- Transition vers un panache passif
- La poussée existe toujours mais est beaucoup moins forte.

- Phénomènes physiques prédominants :
 - Composante verticale de la quantité de mouvement
 - Frottement du nuage sur le sol
- Paramètre caractéristique :

Coefficient de frottement

$$C_{_{\mathrm{f}}} = \frac{\tau}{\rho \mathrm{w}^{2}}$$
 avec τ frottement

Quatrième phase : dispersion passive

- traduit la phase passive pour laquelle le nuage est tellement dilué que la poussée devient négligeable.
- Seule la turbulence atmosphérique détermine la dispersion du nuage.